Publications by authors named "Ioffe L"

By considering the quench dynamics of two-dimensional frustrated Ising models through numerical simulations, we investigate the dynamical critical behavior on the multicritical Nishimori point (NP). We calculate several dynamical critical exponents, namely, the relaxation exponent z_{c}, the autocorrelation exponent λ_{c}, and the persistence exponent θ_{c}, after a quench from the high temperature phase to the NP. We confirm their universality with respect to the lattice geometry and bond distribution.

View Article and Find Full Text PDF

Undesired coupling to the surrounding environment destroys long-range correlations in quantum processors and hinders coherent evolution in the nominally available computational space. This noise is an outstanding challenge when leveraging the computation power of near-term quantum processors. It has been shown that benchmarking random circuit sampling with cross-entropy benchmarking can provide an estimate of the effective size of the Hilbert space coherently available.

View Article and Find Full Text PDF

Understanding universal aspects of quantum dynamics is an unresolved problem in statistical mechanics. In particular, the spin dynamics of the one-dimensional Heisenberg model were conjectured as to belong to the Kardar-Parisi-Zhang (KPZ) universality class based on the scaling of the infinite-temperature spin-spin correlation function. In a chain of 46 superconducting qubits, we studied the probability distribution of the magnetization transferred across the chain's center, [Formula: see text].

View Article and Find Full Text PDF

Engineered dissipative reservoirs have the potential to steer many-body quantum systems toward correlated steady states useful for quantum simulation of high-temperature superconductivity or quantum magnetism. Using up to 49 superconducting qubits, we prepared low-energy states of the transverse-field Ising model through coupling to dissipative auxiliary qubits. In one dimension, we observed long-range quantum correlations and a ground-state fidelity of 0.

View Article and Find Full Text PDF

The ±J Ising model is a simple frustrated spin model, where the exchange couplings independently take the discrete value -J with probability p and +J with probability 1-p. It is especially appealing due to its connection to quantum error correcting codes. Here, we investigate the nonequilibrium critical behavior of the two-dimensional ±J Ising model, after a quench from different initial conditions to a critical point T_{c}(p) on the paramagnetic-ferromagnetic (PF) transition line, especially above, below, and at the multicritical Nishimori point (NP).

View Article and Find Full Text PDF

Stabilizer operations are at the heart of quantum error correction and are typically implemented in software-controlled entangling gates and measurements of groups of qubits. Alternatively, qubits can be designed so that the Hamiltonian corresponds directly to a stabilizer for protecting quantum information. We demonstrate such a hardware implementation of stabilizers in a superconducting circuit composed of chains of π-periodic Josephson elements.

View Article and Find Full Text PDF

We propose a quantum algorithm for inferring the molecular nuclear spin Hamiltonian from time-resolved measurements of spin-spin correlators, which can be obtained via nuclear magnetic resonance (NMR). We focus on learning the anisotropic dipolar term of the Hamiltonian, which generates dynamics that are challenging to classically simulate in some contexts. We demonstrate the ability to directly estimate the Jacobian and Hessian of the corresponding learning problem on a quantum computer, allowing us to learn the Hamiltonian parameters.

View Article and Find Full Text PDF

Systems of correlated particles appear in many fields of modern science and represent some of the most intractable computational problems in nature. The computational challenge in these systems arises when interactions become comparable to other energy scales, which makes the state of each particle depend on all other particles. The lack of general solutions for the three-body problem and acceptable theory for strongly correlated electrons shows that our understanding of correlated systems fades when the particle number or the interaction strength increases.

View Article and Find Full Text PDF

Inherent symmetry of a quantum system may protect its otherwise fragile states. Leveraging such protection requires testing its robustness against uncontrolled environmental interactions. Using 47 superconducting qubits, we implement the one-dimensional kicked Ising model, which exhibits nonlocal Majorana edge modes (MEMs) with [Formula: see text] parity symmetry.

View Article and Find Full Text PDF

The discovery of topological order has revised the understanding of quantum matter and provided the theoretical foundation for many quantum error–correcting codes. Realizing topologically ordered states has proven to be challenging in both condensed matter and synthetic quantum systems. We prepared the ground state of the toric code Hamiltonian using an efficient quantum circuit on a superconducting quantum processor.

View Article and Find Full Text PDF

Quantum many-body systems display rich phase structure in their low-temperature equilibrium states. However, much of nature is not in thermal equilibrium. Remarkably, it was recently predicted that out-of-equilibrium systems can exhibit novel dynamical phases that may otherwise be forbidden by equilibrium thermodynamics, a paradigmatic example being the discrete time crystal (DTC).

View Article and Find Full Text PDF
Article Synopsis
  • Quantum scrambling spreads localized quantum information throughout a system, raising important questions in physics.
  • The study uses a 53-qubit quantum processor to explore how operator spreading and operator entanglement behave during scrambling.
  • Findings indicate that while operator spreading can be efficiently modeled classically, operator entanglement demands exponentially more resources to simulate, paving the way for future studies with quantum processors.
View Article and Find Full Text PDF

A promising approach to study condensed-matter systems is to simulate them on an engineered quantum platform. However, the accuracy needed to outperform classical methods has not been achieved so far. Here, using 18 superconducting qubits, we provide an experimental blueprint for an accurate condensed-matter simulator and demonstrate how to investigate fundamental electronic properties.

View Article and Find Full Text PDF

The central challenge in building a quantum computer is error correction. Unlike classical bits, which are susceptible to only one type of error, quantum bits (qubits) are susceptible to two types of error, corresponding to flips of the qubit state about the X and Z directions. Although the Heisenberg uncertainty principle precludes simultaneous monitoring of X- and Z-flips on a single qubit, it is possible to encode quantum information in large arrays of entangled qubits that enable accurate monitoring of all errors in the system, provided that the error rate is low.

View Article and Find Full Text PDF

A major issue for the implementation of large-scale superconducting quantum circuits is the interaction with interfacial two-level system (TLS) defects that lead to qubit parameter fluctuations and relaxation. Another major challenge comes from nonequilibrium quasiparticles (QPs) that result in qubit relaxation and dephasing. Here, we reveal a previously unexplored decoherence mechanism in the form of a new type of TLS originating from trapped QPs, which can induce qubit relaxation.

View Article and Find Full Text PDF

Strongly disordered pseudogapped superconductors are expected to display arbitrarily high values of kinetic inductance close to the superconductor-insulator transition (SIT), which make them attractive for the implementation of large dissipationless inductance. We develop the theory of the collective modes in these superconductors and discuss associated dissipation at microwave frequencies. We obtain the collective mode spectra dependence on the disorder level and conclude that collective modes become a relevant source of dissipation and noise in the outer proximity of the SIT.

View Article and Find Full Text PDF

We combine numerical diagonalization with semianalytical calculations to prove the existence of the intermediate nonergodic but delocalized phase in the Anderson model on disordered hierarchical lattices. We suggest a new generalized population dynamics that is able to detect the violation of ergodicity of the delocalized states within the Abou-Chakra, Anderson, and Thouless recursive scheme. This result is supplemented by statistics of random wave functions extracted from exact diagonalization of the Anderson model on ensemble of disordered random regular graphs (RRG) of N sites with the connectivity K=2.

View Article and Find Full Text PDF

We observe the effect of the Aharonov-Casher (AC) interference on the spectrum of a superconducting system containing a symmetric Cooper pair box (CPB) and a large inductance. By varying the charge n_{g} induced on the CPB island, we observe oscillations of the device spectrum with the period Δn_{g}=2e. These oscillations are attributed to the charge-controlled AC interference between the fluxon tunneling processes in the CPB Josephson junctions.

View Article and Find Full Text PDF

Strictly speaking, the laws of the conventional statistical physics, based on the equipartition postulate [Gibbs J W (1902) Elementary Principles in Statistical Mechanics, developed with especial reference to the rational foundation of thermodynamics] and ergodicity hypothesis [Boltzmann L (1964) Lectures on Gas Theory], apply only in the presence of a heat bath. Until recently this restriction was believed to be not important for real physical systems because a weak coupling to the bath was assumed to be sufficient. However, this belief was not examined seriously until recently when the progress in both quantum gases and solid-state coherent quantum devices allowed one to study the systems with dramatically reduced coupling to the bath.

View Article and Find Full Text PDF

The search for Majorana bound states in solid-state physics has been limited to materials that display a gap in their bulk spectrum. We show that such unpaired states appear in certain quasi-one-dimensional Josephson-junction arrays with gapless bulk excitations. The bulk modes mediate a coupling between Majorana bound states via the Ruderman-Kittel-Yosida-Kasuya mechanism.

View Article and Find Full Text PDF

We have studied the low-energy excitations in a minimalistic protected Josephson circuit which contains two basic elements (rhombi) characterized by the π periodicity of the Josephson energy. Novel design of these elements, which reduces their sensitivity to the offset charge fluctuations, has been employed. We have observed that the lifetime T1 of the first excited state of this quantum circuit in the protected regime is increased up to 70  μs, a factor of ∼100 longer than that in the unprotected state.

View Article and Find Full Text PDF

In a number of recent experiments with microwave high quality superconducting coplanar waveguide resonators an anomalously weak power dependence of the quality factor has been observed. We argue that this observation implies that the monochromatic radiation does not saturate the two level systems (TLS) located at the interface oxide surfaces of the resonator and suggests the importance of their interactions. We estimate the microwave loss due to interacting TLS and show that the interactions between TLS lead to a drift of their energies that result in a much slower, logarithmic dependence of their absorption on the radiation power in agreement with the data.

View Article and Find Full Text PDF

The origin of continuous energy spectra in large disordered interacting quantum systems is one of the key unsolved problems in quantum physics. Although small quantum systems with discrete energy levels are noiseless and stay coherent forever in the absence of any coupling to external world, most large-scale quantum systems are able to produce a thermal bath and excitation decay. This intrinsic decoherence is manifested by a broadening of energy levels, which aquire a finite width.

View Article and Find Full Text PDF

We report on the realization of a superinductor, a dissipationless element whose microwave impedance greatly exceeds the resistance quantum R(Q). The design of the superinductor, implemented as a ladder of nanoscale Josephson junctions, enables tuning of the inductance and its nonlinearity by a weak magnetic field. The Rabi decay time of the superinductor-based qubit exceeds 1 μs.

View Article and Find Full Text PDF

We review the general notion of topological protection of quantum states in spin models and its relation with the ideas of quantum error correction. We show that topological protection can be viewed as a Hamiltonian realization of error correction: for a quantum code for which the minimal number of errors that remain undetected is N, the corresponding Hamiltonian model of the effects of the environment noise appears only in the Nth order of the perturbation theory.We discuss the simplest model Hamiltonians that realize topological protection and their implementation in superconducting arrays.

View Article and Find Full Text PDF