Although not currently in the infectious disease spotlight, there is still a pressing need for new agents to treat tuberculosis caused by . As there is an ever-increasing amount of clinical resistance to the current drugs, ideally new drugs would be found against novel targets to circumvent pre-existing resistance. A phenotypic growth screen identified a novel singleton, , as an inhibitor of growth.
View Article and Find Full Text PDFUnlabelled: (Mtb) exhibits an impressive ability to adapt to rapidly changing environments, despite its genome's apparent stability. Recently, phase variation through indel formation in homopolymeric tracts (HT) has emerged as a potentially important mechanism promoting adaptation in Mtb. This study examines the impact of common phase variants associated with the ESX-1 type VII secretion system, focusing on a highly variable HT upstream of the ESX-1 regulatory factor, .
View Article and Find Full Text PDFUnlabelled: ) is a clinically significant pathogen and a highly genetically diverse species due to its large accessory genome. The functional consequence of this diversity remains unknown mainly because, to date, functional genomic studies in have been primarily performed on reference strains. Given the growing public health threat of infections, understanding the functional genomic differences among clinical isolates can provide more insight into how its genetic diversity influences gene essentiality, clinically relevant phenotypes, and importantly, potential drug targets.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2023
Resistance of bacterial pathogens against antibiotics is declared by WHO as a major global health threat. As novel antibacterial agents are urgently needed, we re-assessed the broad-spectrum myxobacterial antibiotic myxovalargin and found it to be extremely potent against . To ensure compound supply for further development, we studied myxovalargin biosynthesis in detail enabling production via fermentation of a native producer.
View Article and Find Full Text PDFAlternative mode-of-inhibition of clinically validated targets is an effective strategy for circumventing existing clinical drug resistance. Herein, we report 1,3-diarylpyrazolyl-acylsulfonamides as potent inhibitors of HadAB/BC, a 3-hydroxyl-ACP dehydratase complex required to iteratively elongate the meromycolate chain of mycolic acids in (). Mutations in compound -resistant mutants mapped to HadC (Rv0637; K157R), while chemoproteomics confirmed the compound's binding to HadA (Rv0635), HadB (Rv0636), and HadC.
View Article and Find Full Text PDFNew drugs and new targets are urgently needed to treat tuberculosis. We discovered that d-phenylalanine-benzoxazole displays potent antibacterial activity against () in multiple media and in macrophage infections. A metabolomic profiling indicates that has a unique mechanism of action.
View Article and Find Full Text PDF