Recent prospective studies have shown that dysregulation of the immune system may precede the development of B-cell lymphomas (BCL) in immunocompetent individuals. However, to date, the studies were restricted to a few immune markers, which were considered separately. Using a nested case-control study within two European prospective cohorts, we measured plasma levels of 28 immune markers in samples collected a median of 6 years before diagnosis (range 2.
View Article and Find Full Text PDFBMC Genomics
September 2017
Background: B-cell chronic lymphocytic leukemia (CLL) is a common type of adult leukemia. It often follows an indolent course and is preceded by monoclonal B-cell lymphocytosis, an asymptomatic condition, however it is not known what causes subjects with this condition to progress to CLL. Hence the discovery of prediagnostic markers has the potential to improve the identification of subjects likely to develop CLL and may also provide insights into the pathogenesis of the disease of potential clinical relevance.
View Article and Find Full Text PDFWe recently reported that differential gene expression and DNA methylation profiles in blood leukocytes of apparently healthy smokers predicts with remarkable efficiency diseases and conditions known to be causally associated with smoking, suggesting that blood-based omic profiling of human populations may be useful for linking environmental exposures to potential health effects. Here we report on the sex-specific effects of tobacco smoking on transcriptomic and epigenetic features derived from genome-wide profiling in white blood cells, identifying 26 expression probes and 92 CpG sites, almost all of which are affected only in female smokers. Strikingly, these features relate to numerous genes with a key role in the pathogenesis of cardiovascular disease, especially thrombin signaling, including the thrombin receptors on platelets F2R (coagulation factor II (thrombin) receptor; PAR1) and GP5 (glycoprotein 5), as well as HMOX1 (haem oxygenase 1) and BCL2L1 (BCL2-like 1) which are involved in protection against oxidative stress and apoptosis, respectively.
View Article and Find Full Text PDFThe utility of blood-based omic profiles for linking environmental exposures to their potential health effects was evaluated in 649 individuals, drawn from the general population, in relation to tobacco smoking, an exposure with well-characterised health effects. Using disease connectivity analysis, we found that the combination of smoking-modified, genome-wide gene (including miRNA) expression and DNA methylation profiles predicts with remarkable reliability most diseases and conditions independently known to be causally associated with smoking (indicative estimates of sensitivity and positive predictive value 94% and 84%, respectively). Bioinformatics analysis reveals the importance of a small number of smoking-modified, master-regulatory genes and suggest a central role for altered ubiquitination.
View Article and Find Full Text PDFThis paper aims to enlighten the complex etiology beneath obesity by analysing data from a large nutrigenetics study, in which nutritional and genetic factors associated with obesity were recorded for around two thousand individuals. In our previous work, these data have been analysed using artificial neural network methods, which identified optimised subsets of factors to predict one's obesity status. These methods did not reveal though how the selected factors interact with each other in the obtained predictive models.
View Article and Find Full Text PDFDNA methylation profiling exploits microarray technologies, thus yielding a wealth of high-volume data. Here, an intelligent framework is applied, encompassing epidemiological genome-scale DNA methylation data produced from the Illumina's Infinium Human Methylation 450K Bead Chip platform, in an effort to correlate interesting methylation patterns with cancer predisposition and, in particular, breast cancer and B-cell lymphoma. Feature selection and classification are employed in order to select, from an initial set of ~480,000 methylation measurements at CpG sites, predictive cancer epigenetic biomarkers and assess their classification power for discriminating healthy versus cancer related classes.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
January 2015
Multimodal data combined in an integrated dataset can be used to aim the identification of instrumental biological actions that trigger the development of a disease. In this paper, we use an integrated dataset related to cutaneous melanoma that fuses two separate sets providing complementary information (gene expression profiling and imaging). Our first goal is to select a subset of genes that comprise candidate genetic biomarkers.
View Article and Find Full Text PDFHigh-throughput DNA methylation profiling exploits microarray technologies thus providing a wealth of data, which however solicits rigorous, generic, and analytical pipelines for an efficient systems level analysis and interpretation. In this study, we utilize the Illumina's Infinium Human Methylation 450K BeadChip platform in an epidemiological cohort, targeting to associate interesting methylation patterns with breast cancer predisposition. The computational framework proposed here extends the--established in transcriptomic microarrays--logarithmic ratio of the methylated versus the unmethylated signal intensities, quoted as M-value.
View Article and Find Full Text PDFThe wealth of data amassed by the utilization of various high-throughput techniques, in various layers of molecular dissection, stresses the critical role of the unification of the computational methodologies applied in biological data handling, storage, analysis and visualization. In this article, a generic workflow is showcased in a multi-omic dataset that is used to study Obstructive Nephropathy (ON) in children, integrating microarray data from several biological layers (transcriptomic, post-transcriptomic, proteomic). The workflow exploits raw measurements and through several analytical stages (preprocessing, statistical and functional), which entail various parsing steps, reaches the visualization stage of the heterogeneous, broader, molecular interacting network derived.
View Article and Find Full Text PDFIn this paper, a multiresolution approach is suggested for texture classification of atherosclerotic tissue from B-mode ultrasound. Four decomposition schemes, namely, the discrete wavelet transform, the stationary wavelet transform, wavelet packets (WP), and Gabor transform (GT), as well as several basis functions, were investigated in terms of their ability to discriminate between symptomatic and asymptomatic cases. The mean and standard deviation of the detail subimages produced for each decomposition scheme were used as texture features.
View Article and Find Full Text PDFBackground: Obesity is a multifactorial trait, which comprises an independent risk factor for cardiovascular disease (CVD). The aim of the current work is to study the complex etiology beneath obesity and identify genetic variations and/or factors related to nutrition that contribute to its variability. To this end, a set of more than 2300 white subjects who participated in a nutrigenetics study was used.
View Article and Find Full Text PDFA set of proteins is a complex system whose elements are interrelated on the concept of sequence- and structure-based similarity. Here, we applied a similarity network-based methodology for the representation and analysis of protein sequences and structures sets using a non-redundant set of 311 proteins and three different information criteria based on sequence-derived features, sequence local alignment and structural alignment. A wide set of measurements, like network degree, clustering coefficient, characteristic path length and vertex centrality were utilized to characterize the networks' topology.
View Article and Find Full Text PDFClinical studies indicate that exaggerated postprandial lipemia is linked to the progression of atherosclerosis, leading cause of Cardiovascular Diseases (CVD). CVD is a multi-factorial disease with complex etiology and according to the literature postprandial Triglycerides (TG) can be used as an independent CVD risk factor. Aim of the current study is to construct an Artificial Neural Network (ANN) based system for the identification of the most important gene-gene and/or gene-environmental interactions that contribute to a fast or slow postprandial metabolism of TG in blood and consequently to investigate the causality of postprandial TG response.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
March 2008
Aim of this paper is to evaluate the diagnostic contribution of various types of texture features in discrimination of hepatic tissue in abdominal non-enhanced Computed Tomography (CT) images. Regions of Interest (ROIs) corresponding to the classes: normal liver, cyst, hemangioma, and hepatocellular carcinoma were drawn by an experienced radiologist. For each ROI, five distinct sets of texture features are extracted using First Order Statistics (FOS), Spatial Gray Level Dependence Matrix (SGLDM), Gray Level Difference Method (GLDM), Laws' Texture Energy Measures (TEM), and Fractal Dimension Measurements (FDM).
View Article and Find Full Text PDFObjectives: The aim of the present study is to define an optimally performing computer-aided diagnosis (CAD) architecture for the classification of liver tissue from non-enhanced computed tomography (CT) images into normal liver (C1), hepatic cyst (C2), hemangioma (C3), and hepatocellular carcinoma (C4). To this end, various CAD architectures, based on texture features and ensembles of classifiers (ECs), are comparatively assessed.
Materials And Methods: Number of regions of interests (ROIs) corresponding to C1-C4 have been defined by experienced radiologists in non-enhanced liver CT images.
The location of the membrane lipid bilayer relative to a transmembrane protein structure is important in protein engineering. Since it is not present on the determined structures, it is essential to automatically define the membrane embedded protein region in order to test mutation effects or to design potential drugs. beta-Barrel transmembrane proteins, present in nature as outer membrane proteins (OMPs), comprise one of the two transmembrane protein fold classes.
View Article and Find Full Text PDF