Laser-induced forward transfer (LIFT) printing has emerged as a valid digital printing technique capable of transferring and printing a wide range of electronic materials. In this paper, we present for the first time LIFT printing as a method to fabricate silver (Ag) nanoparticle (np) grids for the development of indium tin oxide (ITO)-free inverted PM6:Y6 nonfullerene acceptor organic photovoltaics (OPVs). Limitations of the direct use of LIFT-printed Ag np grids in inverted ITO-free OPVs are addressed through a Ag grid embedding process.
View Article and Find Full Text PDFBioprinting offers great potential for the fabrication of three-dimensional living tissues by the precise layer-by-layer printing of biological materials, including living cells and cell-laden hydrogels. The laser-induced forward transfer (LIFT) of cell-laden bioinks is one of the most promising laser-printing technologies enabling biofabrication. However, for it to be a viable bioprinting technology, bioink printability must be carefully examined.
View Article and Find Full Text PDFCurrent challenges in printed circuit board (PCB) assembly require high-resolution deposition of ultra-fine pitch components (<0.3 mm and <60 μm respectively), high throughput and compatibility with flexible substrates, which are poorly met by the conventional deposition techniques (e.g.
View Article and Find Full Text PDFInt J Lab Hematol
August 2019
Introduction: Diagnosis of myelodysplastic syndromes (MDS) is usually challenging. In this context, we have attempted to employ data derived from automated analysis of bone marrow (BM) samples as an ancillary tool for the discrimination between reactive marrow and MDS.
Methods: A total of 101 BM anticoagulated samples referred for flow cytometry (FCM) analysis on the clinical suspicion of MDS had been previously counted in a Mindray BC-6800 hematology analyzer (testing set).
Background: Bone marrow (BM) samples obtained from minimal residual disease (MRD)-negative children with B-cell acute lymphoblastic leukemia (B-ALL) were used in our laboratory as negative biological controls for the development of a neuroblastoma (NBL) flow-cytometric (FC) protocol. The accidental, but systematic, identification of rare cell populations (RCP) mimicking NBL cells (CD45 /CD56 ) in these samples indicated the need for their thorough immunophenotypic identification, in order to elucidate their possible interference in NBL-MRD assessment.
Procedure: RCP observed in BM samples from 14 children recovering from BM aplasia due to intensive chemotherapy for B-ALL were investigated with the following markers: CD81, CD200, CD24, GD2, CD73, CD13, CD90, CD146, CD9, CD117, CD10, CD99, and NG2.
The increasing development of flexible and printed electronics has fueled substantial advancements in selective laser sintering, which has been attracting interest over the past decade. Laser sintering of metal nanoparticle dispersions in particular (from low viscous inks to high viscous pastes) offers significant advantages with respect to more conventional thermal sintering or curing techniques. Apart from the obvious lateral selectivity, the use of short-pulsed and high repetition rate lasers minimizes the heat affected zone and offers unparalleled control over a digital process, enabling the processing of stacked and pre-structured layers on very sensitive polymeric substrates.
View Article and Find Full Text PDFAg nanowire (NW) networks have exquisite optical and electrical properties which make them ideal candidate materials for flexible transparent conductive electrodes. Despite the compatibility of Ag NW networks with laser processing, few demonstrations of laser fabricated Ag NW based components currently exist. In this work, we report on a novel single step laser transferring and laser curing process of micrometer sized pixels of Ag NW networks on flexible substrates.
View Article and Find Full Text PDFStud Health Technol Inform
February 2018
In this article novel approaches for the improvement of the recorded signal coupled with the feasibility of multiple analyte detection, irrespective of the biosensor platform are being presented. The techniques that have been developed address commonly encountered issues that have traditionally hindered the commercialization of biosensors, such as cost, reproducibility and sensitivity and most importantly multianalyte detection. The fluorescence-based detection of copper is being described as an example of the use of Laser Induced Forward Transfer technique (LIFT) for the immobilization of biomolecules with high spatial resolution, in addition to a technique that involves the displacement of a short complementary strand to the immobilized probe molecule for the quantification of analyte binding and the enhancement of the recorded signal.
View Article and Find Full Text PDF