Publications by authors named "Ioannis S Tsagkalias"

An industry listed as one of the largest globally is the cosmetic industry. In recent years, this industry has shown growing interest in the application of natural ingredients providing advanced properties to cosmetic creams such as moisturizing, antioxidant, sun-protecting and antimicrobial effects. In this context, the present study concerns the production of cosmetic emulsions containing oil obtained via the methods of extraction, hydro-distillation and maceration using sunflower oil as the carrier oil.

View Article and Find Full Text PDF

Functional groups in a monomer molecule usually play an important role during polymerization by enhancing or decreasing the reaction rate due to the possible formation of side bonds. The situation becomes more complicated when polymerization takes place in the presence of graphene oxide since it also includes functional groups in its surface. Aiming to explore the role of functional groups on polymerization rate, the in situ bulk radical polymerization of hydroxyethyl acrylate (HEA) in the presence or not of graphene oxide was investigated.

View Article and Find Full Text PDF

The great concern about the use of hazardous additives in food packaging materials has shown the way to new bio-based materials, such as nanoclays incorporating bioactive essential oils (EO). One of the still unresolved issues is the proper incorporation of these materials into a polymeric matrix. The in situ polymerization seems to be a promising technique, not requiring high temperatures or toxic solvents.

View Article and Find Full Text PDF

Nanocomposite materials based on copolymers of styrene and n-butyl methacrylate with either graphene oxide (GO) or functionalized graphene oxide (F-GO) were synthesized using the in-situ bulk radical copolymerization technique. Reaction kinetics was studied both experimentally and theoretically using a detailed kinetic model also taking into account the effect of diffusion-controlled phenomena on the reaction kinetic rate constants. It was found that the presence of GO results in lower polymerization rates accompanied by the synthesis of copolymers having higher average molecular weights.

View Article and Find Full Text PDF

The synthesis of nanocomposite materials based on poly(methyl methacrylate) and graphene oxide (GO) is presented using the in situ polymerization technique, starting from methyl methacrylate, graphite oxide, and an initiator, and carried out either with (solution) or without (bulk) in the presence of a suitable solvent. Reaction kinetics was followed gravimetrically and the appropriate characterization of the products took place using several experimental techniques. X-ray diffraction (XRD) data showed that graphite oxide had been transformed to graphene oxide during polymerization, whereas FTIR spectra revealed no significant interactions between the polymer matrix and GO.

View Article and Find Full Text PDF