Publications by authors named "Ioannis Roxanis"

Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) functions as a critical stress sentinel that coordinates cell survival, inflammation, and immunogenic cell death (ICD). Although the catalytic function of RIPK1 is required to trigger cell death, its non-catalytic scaffold function mediates strong pro-survival signaling. Accordingly, cancer cells can hijack RIPK1 to block necroptosis and evade immune detection.

View Article and Find Full Text PDF
Article Synopsis
  • Anti-EGFR antibodies have limited effectiveness in breast cancer due to compensatory pathways and resistance in triple-negative breast cancer (TNBC) from CDK2/cyclin E expression; however, a cetuximab-based antibody drug conjugate (ADC) incorporating a CDK inhibitor may improve targeted treatment.
  • In experimental designs, researchers evaluated the expressions of cell cycle regulators alongside EGFR and developed an ADC, combining cetuximab with CDK inhibitor SNS-032, to specifically deliver treatment to EGFR-expressing cancer cells.
  • Results showed that the ADC effectively inhibited tumor growth, induced cytotoxic effects on high EGFR-expressing cells, and demonstrated potential for improved targeting in aggressive breast cancer types, highlighting the importance
View Article and Find Full Text PDF

Purpose: Tumor-infiltrating lymphocytes (TILs) have prognostic significance in several cancers, including breast cancer. Despite interest in combining radiation therapy with immunotherapy, little is known about the effect of radiation therapy itself on the tumor-immune microenvironment, including TILs. Here, we interrogated longitudinal dynamics of TILs and systemic lymphocytes in patient samples taken before, during, and after neoadjuvant radiation therapy (NART) from PRADA and Neo-RT breast clinical trials.

View Article and Find Full Text PDF

Breast cancer leptomeningeal metastasis (BCLM), where tumour cells grow along the lining of the brain and spinal cord, is a devastating development for patients. Investigating this metastatic site is hampered by difficulty in accessing tumour material. Here, we utilise cerebrospinal fluid (CSF) cell-free DNA (cfDNA) and CSF disseminated tumour cells (DTCs) to explore the clonal evolution of BCLM and heterogeneity between leptomeningeal and extracranial metastatic sites.

View Article and Find Full Text PDF

BACKGROUNDPhase 1 study of ATRinhibition alone or with radiation therapy (PATRIOT) was a first-in-human phase I study of the oral ATR (ataxia telangiectasia and Rad3-related) inhibitor ceralasertib (AZD6738) in advanced solid tumors.METHODSThe primary objective was safety. Secondary objectives included assessment of antitumor responses and pharmacokinetic (PK) and pharmacodynamic (PD) studies.

View Article and Find Full Text PDF

Purpose: The TNT trial (NCT00532727) showed no evidence of carboplatin superiority over docetaxel in metastatic triple-negative breast cancer (mTNBC), but carboplatin benefit was observed in the germline BRCA1/2 mutation subgroup. Broader response-predictive biomarkers are needed. We explored the predictive ability of DNA damage response (DDR) and immune markers.

View Article and Find Full Text PDF

SF3B1 hotspot mutations are associated with a poor prognosis in several tumor types and lead to global disruption of canonical splicing. Through synthetic lethal drug screens, we identify that SF3B1 mutant (SF3B1) cells are selectively sensitive to poly (ADP-ribose) polymerase inhibitors (PARPi), independent of hotspot mutation and tumor site. SF3B1 cells display a defective response to PARPi-induced replication stress that occurs via downregulation of the cyclin-dependent kinase 2 interacting protein (CINP), leading to increased replication fork origin firing and loss of phosphorylated CHK1 (pCHK1; S317) induction.

View Article and Find Full Text PDF

Background: Intracellular communication within the tumour is complex and extracellular vesicles (EVs) have been identified as major contributing factors for the cell-to-cell communication in the local and distant tumour environments. Here, we examine the differential effects of breast cancer (BC) subtype-specific patient serum and cell-line derived EVs in the regulation of T cell mediated immune responses.

Methods: Ultracentrifugation was used to isolate EVs from sera of 63 BC patients, 15 healthy volunteers and 4 human breast cancer cell lines.

View Article and Find Full Text PDF

The discovery of increasing numbers of actionable molecular and gene targets for cancer treatment has driven the demand for tissue sampling for next-generation sequencing (NGS). Requirements for sequencing can be very specific, and inadequate sampling leads to delays in management and decision making. It is important that interventional radiologists are aware of NGS technologies and their common applications and be cognizant of the factors that contribute to successful sample sequencing.

View Article and Find Full Text PDF

Purpose: To identify potential immune targets in post-neoadjuvant chemotherapy (NAC)-resistant triple-negative breast cancer (TNBC) and ER+HER2- breast cancer disease.

Experimental Design: Following pathology review, 153 patients were identified as having residual cancer burden (RCB) II/III disease (TNBC n = 80; ER+HER2-n = 73). Baseline pre-NAC samples were available for evaluation for 32 of 80 TNBC and 36 of 73 ER+HER2- cases.

View Article and Find Full Text PDF

Introduction: Our breast screening unit was identified as high outlier for B3 lesions with a low positive predictive value (PPV) compared to the England average. This prompted a detailed internal audit and review of B3 lesions and their outcomes to identify causes and address any variation in practice.

Patients And Methods: The B3 rate was calculated in 4168 breast core biopsies from 2019, using the subsequent excision to determine the PPV.

View Article and Find Full Text PDF

Mutations and loss of E-cadherin protein expression define the vast majority of invasive lobular carcinomas. In a subset of these cases, the heterogeneous expression of E-cadherin is observed either as wild-type (strong membranous) expression or aberrant expression (cytoplasmic expression). However, it is unclear as to whether the two components would be driven by distinct genetic or epigenetic alterations.

View Article and Find Full Text PDF

Ovarian clear cell carcinoma (OCCC) is a rare subtype of epithelial ovarian cancer characterised by a high frequency of loss-of-function mutations and a poor response to chemotherapy. Despite their generally low mutational burden, an intratumoural T cell response has been reported in a subset of OCCC, with purported to be a biomarker for the response to the immune checkpoint blockade independent of micro-satellite instability (MSI). However, assessment of the different immune cell types and spatial distribution specifically within OCCC patients has not been described to date.

View Article and Find Full Text PDF

ELTD1/ADGRL4 expression is increased in the vasculature of a number of tumor types and this correlates with a good prognosis. Expression has also been reported in some tumor cells with high expression correlating with a good prognosis in hepatocellular carcinoma (HCC) and a poor prognosis in glioblastoma. Here we show that 35% of primary human breast tumors stain positively for ELTD1, with 9% having high expression that correlates with improved relapse-free survival.

View Article and Find Full Text PDF

Necroptosis is a lytic, inflammatory form of cell death that not only contributes to pathogen clearance but can also lead to disease pathogenesis. Necroptosis is triggered by RIPK3-mediated phosphorylation of MLKL, which is thought to initiate MLKL oligomerisation, membrane translocation and membrane rupture, although the precise mechanism is incompletely understood. Here, we show that K63-linked ubiquitin chains are attached to MLKL during necroptosis and that ubiquitylation of MLKL at K219 significantly contributes to the cytotoxic potential of phosphorylated MLKL.

View Article and Find Full Text PDF

The field of immuno-oncology has expanded rapidly over the past decade, but key questions remain. How does tumour-immune interaction regulate disease progression? How can we prospectively identify patients who will benefit from immunotherapy? Identifying measurable features of the tumour immune-microenvironment which have prognostic or predictive value will be key to making meaningful gains in these areas. Recent developments in deep learning enable big-data analysis of pathological samples.

View Article and Find Full Text PDF

High computational cost associated with digital pathology image analysis approaches is a challenge towards their translation in routine pathology clinic. Here, we propose a computationally efficient framework (SuperHistopath), designed to map global context features reflecting the rich tumor morphological heterogeneity. SuperHistopath efficiently combines i) a segmentation approach using the linear iterative clustering (SLIC) superpixels algorithm applied directly on the whole-slide images at low resolution (5x magnification) to adhere to region boundaries and form homogeneous spatial units at tissue-level, followed by ii) classification of superpixels using a convolution neural network (CNN).

View Article and Find Full Text PDF

Triple-negative breast cancers (TNBC) are resistant to standard-of-care chemotherapy and lack known targetable driver gene alterations. Identification of novel drivers could aid the discovery of new treatment strategies for this hard-to-treat patient population, yet studies using high-throughput and accurate models to define the functions of driver genes in TNBC to date have been limited. Here, we employed unbiased functional genomics screening of the 200 most frequently mutated genes in breast cancer, using spheroid cultures to model -like conditions, and identified the histone acetyltransferase CREBBP as a novel tumor suppressor in TNBC.

View Article and Find Full Text PDF

Diverse extracellular matrix patterns are observed in both normal and pathological tissue. However, most current tools for quantitative analysis focus on a single aspect of matrix patterning. Thus, an automated pipeline that simultaneously quantifies a broad range of metrics and enables a comprehensive description of varied matrix patterns is needed.

View Article and Find Full Text PDF

Drugs that mobilise the immune system against cancer are dramatically improving care for many people. Dying cancer cells play an active role in inducing anti-tumour immunity but not every form of death can elicit an immune response. Moreover, resistance to apoptosis is a major problem in cancer treatment and disease control.

View Article and Find Full Text PDF

Computational pathology-based cell classification algorithms are revolutionizing the study of the tumor microenvironment and can provide novel predictive/prognosis biomarkers crucial for the delivery of precision oncology. Current algorithms used on hematoxylin and eosin slides are based on individual cell nuclei morphology with limited local context features. Here, we propose a novel multi-resolution hierarchical framework (SuperCRF) inspired by the way pathologists perceive regional tissue architecture to improve cell classification and demonstrate its clinical applications.

View Article and Find Full Text PDF

Collagen plays a key role in normal and malignant tissue homeostasis. While the prognostic significance of collagen fiber remodeling in invasive breast cancer has been studied, its role in ductal carcinoma in situ (DCIS) remains poorly defined. Using image analysis, we aimed to evaluate the prognostic significance of the geometric characteristics of collagen surrounding DCIS.

View Article and Find Full Text PDF

Late-phase clinical trials investigating metformin as a cancer therapy are underway. However, there remains controversy as to the mode of action of metformin in tumors at clinical doses. We conducted a clinical study integrating measurement of markers of systemic metabolism, dynamic FDG-PET-CT, transcriptomics, and metabolomics at paired time points to profile the bioactivity of metformin in primary breast cancer.

View Article and Find Full Text PDF

Purpose: Fresh-frozen (FF) tissue is the optimal source of DNA for whole-genome sequencing (WGS) of cancer patients. However, it is not always available, limiting the widespread application of WGS in clinical practice. We explored the viability of using formalin-fixed, paraffin-embedded (FFPE) tissues, available routinely for cancer patients, as a source of DNA for clinical WGS.

View Article and Find Full Text PDF