A healthy diet can help to prevent or manage many important conditions and diseases, particularly obesity, malnutrition, and diabetes. Recent advancements in artificial intelligence and smartphone technologies have enabled applications to conduct automatic nutritional assessment from meal images, providing a convenient, efficient, and accurate method for continuous diet evaluation. We now extend the goFOOD automatic system to perform food segmentation, recognition, volume, as well as calorie and macro-nutrient estimation from single images that are captured by a smartphone.
View Article and Find Full Text PDFMediterranean diet (MD) can play a major role in decreasing the risks of non-communicable diseases and preventing overweight and obesity. In order for a person to follow the MD and assess their adherence to it, proper dietary assessment methods are required. We have developed an Artificial Intelligence-powered system that recognizes the food and drink items from a single meal photo and estimates their respective serving size, and integrated it into a smartphone application that automatically calculates MD adherence score and outputs a weekly feedback report.
View Article and Find Full Text PDFDiabetes mellitus (DM) and obesity are chronic medical conditions associated with significant morbidity and mortality. Accurate macronutrient and energy estimation could be beneficial in attempts to manage DM and obesity, leading to improved glycemic control and weight reduction, respectively. Existing dietary assessment methods are subject to major errors in measurement, are time consuming, are costly, and do not provide real-time feedback.
View Article and Find Full Text PDFMalnutrition is common, especially among older, hospitalised patients, and is associated with higher mortality, longer hospitalisation stays, infections, and loss of muscle mass. It is therefore of utmost importance to employ a proper method for dietary assessment that can be used for the identification and management of malnourished hospitalised patients. In this study, we propose an automated Artificial Intelligence (AI)-based system that receives input images of the meals before and after their consumption and is able to estimate the patient's energy, carbohydrate, protein, fat, and fatty acids intake.
View Article and Find Full Text PDFThe Mediterranean diet (MD) is regarded as a healthy eating pattern with beneficial effects both for the decrease of the risk for non-communicable diseases and also for body weight reduction. In the current manuscript, we propose an automated smartphone application which monitors and evaluates the user's adherence to MD using images of the food and drinks that they consume. We define a set of rules for automatic adherence estimation, which focuses on the main MD food groups.
View Article and Find Full Text PDF