Optical microscopy is an indispensable tool in biomedical sciences, but its reach in deep tissues is limited due to aberrations and scattering. This problem can be overcome by wavefront-shaping techniques, albeit at limited fields of view (FOVs). Inspired by astronomical imaging, conjugate wavefront shaping can lead to an increased field of view in microscopy, but this correction is limited to a set depth and cannot be dynamically adapted.
View Article and Find Full Text PDFThe controlled modulation of an optical wavefront is required for aberration correction, digital phase conjugation, or patterned photostimulation. For most of these applications, it is desirable to control the wavefront modulation at the highest rates possible. The digital micromirror device (DMD) presents a cost-effective solution to achieve high-speed modulation and often exceeds the speed of the more conventional liquid crystal spatial light modulator but is inherently an amplitude modulator.
View Article and Find Full Text PDFIn this paper we demonstrate the enhancement of the sensing capabilities of glass capillaries. We exploit their properties as optical and acoustic waveguides to transform them potentially into high resolution minimally invasive endoscopic devices. We show two possible applications of silica capillary waveguides demonstrating fluorescence and optical-resolution photoacoustic imaging using a single 330 μm-thick silica capillary.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
June 2015
We propose a new technique for two-dimensional phase unwrapping. The unwrapped phase is found as the solution of an inverse problem that consists in the minimization of an energy functional. The latter includes a weighted data fidelity term that favors sparsity in the error between the true and wrapped phase differences, as well as a regularizer based on higher-order total variation.
View Article and Find Full Text PDFLight propagation through multimode fibers suffers from spatial distortions that lead to a scrambled intensity profile. In previous work, the correction of such distortions using various wavefront control methods has been demonstrated in the continuous wave case. However, in the ultra-fast pulse regime, modal dispersion temporally broadens a pulse after propagation.
View Article and Find Full Text PDFMultimode fiber endoscopes have recently been shown to provide sub-micrometer resolution, however, imaging through a multimode fiber is highly sensitive to bending. Here we describe the implementation of a coherent beacon source placed at the distal tip of the multimode fiber, which can be used to compensate for the effects of bending. In the first part of this paper, we show that a diffraction limited focused spot can be generated at the distal tip of the multimode fiber using the beacon.
View Article and Find Full Text PDFWe present a design that exploits the focusing properties of scattering media to increase the resolution and the working distance of multimode fiber (MMF)-based imaging devices. Placing a highly scattering medium in front of the distal tip of the MMF enables the formation of smaller sized foci at increased working distances away from the fiber tip. We perform a parametric study of the effect of the working distance and the separation between the fiber and the scattering medium on the focus size.
View Article and Find Full Text PDFWe propose and experimentally demonstrate an ultra-thin rigid endoscope (450 μm diameter) based on a passive multimode optical fiber. We use digital phase conjugation to overcome the modal scrambling of the fiber to tightly focus and scan the laser light at its distal end. By exploiting the maximum number of modes available, sub-micron resolution, high quality fluorescence images of neuronal cells were acquired.
View Article and Find Full Text PDFWe demonstrate for the first time to our knowledge a digital phase conjugation technique for generating a sharp focus point at the end of a multimode optical fiber. A sharp focus with a contrast of 1800 is experimentally obtained at the tip of a 105 μm core multimode fiber. Scanning of the focal point is also demonstrated by digital means.
View Article and Find Full Text PDF