Publications by authors named "Ioannis Mouratidis"

Motivation: With the rapid expansion of large-scale biological datasets, DNA and protein sequence alignments have become essential for comparative genomics and proteomics. These alignments facilitate the exploration of sequence similarity patterns, providing valuable insights into sequence conservation, evolutionary relationships and for functional analyses. Typically, sequence alignments are stored in formats such as the Multiple Alignment Format (MAF).

View Article and Find Full Text PDF

Inverted repeats are repetitive elements that can form hairpin and cruciform structures. They are linked to genomic instability, however they also have various biological functions. Their distribution differs markedly across taxonomic groups in the tree of life, and they exhibit high polymorphism due to their inherent genomic instability.

View Article and Find Full Text PDF

Short tandem repeats (STRs) are widespread, repetitive elements, with a number of biological functions and are among the most rapidly mutating regions in the genome. Their distribution varies significantly between taxonomic groups in the tree of life and are highly polymorphic within the human population. Advances in sequencing technologies coupled with decreasing costs have enabled the generation of an ever-growing number of complete genomes.

View Article and Find Full Text PDF

Zimin words are words that have the same prefix and suffix. They are unavoidable patterns, with all sufficiently large strings encompassing them. Here, we examine for the first time the presence of k-mers not containing any Zimin patterns, defined hereafter as Zimin avoidmers, in the human genome.

View Article and Find Full Text PDF

Motivation: Genome and Proteome Alignments, represented by the Multiple Alignment File (MAF) format, have become a standard approach in the field of comparative genomics and proteomics. However, current approaches lack a direct method for motif detection within MAF files. To address this gap, we present MAFin, a novel tool that enables efficient motif detection and conservation analysis in MAF files, streamlining genomic and proteomic research.

View Article and Find Full Text PDF

Background: The advent of liquid biopsies presents a novel, minimally invasive methodology for the detection of disease biomarkers, offering a significant advantage over traditional biopsy techniques. Particularly, the analysis of cell-free RNA (cfRNA) has garnered interest due to its dynamic expression profiles and the capability to study various RNA species, including messenger RNA (mRNA) and long non-coding RNA (lncRNA). These attributes position cfRNA as a versatile biomarker with broad potential applications in clinical research and diagnostics.

View Article and Find Full Text PDF

The rapid progression of genomics and proteomics has been driven by the advent of advanced sequencing technologies, large, diverse, and readily available omics datasets, and the evolution of computational data processing capabilities. The vast amount of data generated by these advancements necessitates efficient algorithms to extract meaningful information. K-mers serve as a valuable tool when working with large sequencing datasets, offering several advantages in computational speed and memory efficiency and carrying the potential for intrinsic biological functionality.

View Article and Find Full Text PDF

Understanding the influence of cis-regulatory elements on gene regulation poses numerous challenges given complexities stemming from variations in transcription factor (TF) binding, chromatin accessibility, structural constraints, and cell-type differences. This review discusses the role of gene regulatory networks in enhancing understanding of transcriptional regulation and covers construction methods ranging from expression-based approaches to supervised machine learning. Additionally, key experimental methods, including MPRAs and CRISPR-Cas9-based screening, which have significantly contributed to understanding TF binding preferences and cis-regulatory element functions, are explored.

View Article and Find Full Text PDF

The decrease in sequencing expenses has facilitated the creation of reference genomes and proteomes for an expanding array of organisms. Nevertheless, no established repository that details organism-specific genomic and proteomic sequences of specific lengths, referred to as kmers, exists to our knowledge. In this article, we present kmerDB, a database accessible through an interactive web interface that provides kmer-based information from genomic and proteomic sequences in a systematic way.

View Article and Find Full Text PDF

The prevalence of nucleic and peptide short sequences across organismal genomes and proteomes has not been thoroughly investigated. We examined 45 785 reference genomes and 21 871 reference proteomes, spanning archaea, bacteria, eukaryotes and viruses to calculate the rarity of short sequences in them. To capture this, we developed a metric of the rarity of each sequence in nature, the rarity index.

View Article and Find Full Text PDF

Early detection of cancer can significantly improve patient outcomes; however, sensitive and highly specific biomarkers for cancer detection are currently missing. Nullomers are the shortest sequences that are absent from the human genome but can emerge due to somatic mutations in cancer. We examine over 10,000 whole exome sequencing matched tumor-normal samples to characterize nullomer emergence across exonic regions of the genome.

View Article and Find Full Text PDF

Early detection of human disease is associated with improved clinical outcomes. However, many diseases are often detected at an advanced, symptomatic stage where patients are past efficacious treatment periods and can result in less favorable outcomes. Therefore, methods that can accurately detect human disease at a presymptomatic stage are urgently needed.

View Article and Find Full Text PDF

Massively parallel reporter assays (MPRAs) represent a set of high-throughput technologies that measure the functional effects of thousands of sequences/variants on gene regulatory activity. There are several different variations of MPRA technology and they are used for numerous applications, including regulatory element discovery, variant effect measurement, saturation mutagenesis, synthetic regulatory element generation or characterization of evolutionary gene regulatory differences. Despite their many designs and uses, there is no comprehensive database that incorporates the results of these experiments.

View Article and Find Full Text PDF

Introduction: NELSON and NLST prompted the implementation of lung cancer screening programs in the United States followed by several European countries. This study aimed to assess the sensitivity of different screening criteria among patients with lung cancer in Greece and investigate reasons for ineligibility.

Methods: We performed a retrospective analysis on patients with lung cancer referred to the largest referral center in Athens, Greece, between June 2014 and May 2023.

View Article and Find Full Text PDF

Early diagnosis of cancer can significantly improve survival of cancer patients; however sensitive and highly specific biomarkers for cancer detection are currently lacking for most cancer types. Nullpeptides are short peptides that are absent from the human proteome. Here, we examined the emergence of nullpeptides during cancer development.

View Article and Find Full Text PDF

Determining the organisms present in a biosample has many important applications in agriculture, wildlife conservation, and healthcare. Here, we develop a universal fingerprint based on the identification of short peptides that are unique to a specific organism. We define quasi-prime peptides as sequences that are found in only one species, and we analyzed proteomes from 21 875 species, from viruses to humans, and annotated the smallest peptide kmer sequences that are unique to a species and absent from all other proteomes.

View Article and Find Full Text PDF

Nullomers and nullpeptides are short DNA or amino acid sequences that are absent from a genome or proteome, respectively. One potential cause for their absence could be their having a detrimental impact on an organism. RESULTS: Here, we identify all possible nullomers and nullpeptides in the genomes and proteomes of thirty eukaryotes and demonstrate that a significant proportion of these sequences are under negative selection.

View Article and Find Full Text PDF

DNA strand asymmetries can have a major effect on several biological functions, including replication, transcription and transcription factor binding. As such, DNA strand asymmetries and mutational strand bias can provide information about biological function. However, a versatile tool to explore this does not exist.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: