Traditional cooling and heating systems in residential buildings account for more than 15% of global electricity consumption and 10% of global emissions of greenhouse gases. Daytime radiative cooling (DRC) is an emerging passive cooling technology that has garnered significant interest in recent years due to its high cooling capability. It is expected to play a pivotal role in improving indoor and outdoor urban environments by mitigating surface and air temperatures while decreasing relevant energy demand.
View Article and Find Full Text PDFHuman comfort outdoors is widely investigated, but most studies explore the comfort domains singularly. This paper aimed to evaluate human comfort in parks, verifying the importance of using a multi-domain (simultaneously evaluating thermal, visual, acoustic, and air quality) and multi-disciplinary (combining environmental and social fields) approach. A walk through a pre-defined path from one park to another was repeated twice per day on four consecutive days in June, with three participants per walk.
View Article and Find Full Text PDFAccurate monitoring is critical for better understanding cities' microclimate conditions and safeguard citizens' health. Previous studies have performed microclimate analyses of urbanized areas by implementing data from either stable meteorological stations or satellites, or by developing mobile stations. Here, we present a vehicle-based monitoring campaign capable of monitoring both the scalar and directionally dependent variables that regulate the canopy layer environment.
View Article and Find Full Text PDFMonitoring microclimate variables within cities with high accuracy is an ongoing challenge for a better urban resilience to climate change. Assessing the intra-urban characteristics of a city is of vital importance for ensuring fine living standards for citizens. Here, a novel mobile microclimate station is applied for monitoring the main microclimatic variables regulating urban and intra-urban environment, as well as directionally monitoring shortwave radiation and illuminance and hence systematically map for the first time the effect of urban surfaces and anthropogenic heat.
View Article and Find Full Text PDF