Molybdenum disulfide (MoS ) is the building component of 1D-monolayer, 2D-layered nanosheets and nanotubes having many applications in industry, and it is detected in various molecular systems observed in nature. Here, the electronic structure and the chemical bonding of sixteen low-lying states of the triatomic MoS molecule are investigated, while the connection of the chemical bonding of the isolated MoS molecule to the relevant 2D-MoS , is emphasized. The MoS molecule is studied via DFT and multireference methodologies, i.
View Article and Find Full Text PDFThe molybdenum-sulfur bond plays an important role in many processes such as nitrogen-fixation, and it is found as a building block in layered materials such as MoS, known for its various shapes and morphologies. Here, we present an accurate theoretical and experimental investigation of the chemical bonding and the electronic structure of 20 low-lying states of the MoS molecule. Multireference and coupled cluster methodologies, namely, MRCISD, MRCISD + Q, RCCSD(T), and RCCSD[T], were employed in conjunction with basis sets up to aug-cc-pwCV5Z-PP/aug-cc-pwCV5Z for the study of these states.
View Article and Find Full Text PDFMultiple bonds between atoms are one of the most fundamental aspects of chemistry. Double and triple bonds are quite common, while quadruple bonds are a true oddity and very rare for the main group elements. Identifying molecules containing quadruple bonds is very important and, even more so, determining the necessary requirements for the existence of such bonds.
View Article and Find Full Text PDFHighly predictive one-parameter quantitative structure-activity relationship models have been developed for platinum-based anticancer drugs using the Pt NMR parameters as strong descriptors. The developed quantitative structure-activity relationship models were applied in diverse homogeneous sets of antiproliferative Pt(II) and Pt(IV) compounds. These observations form the basis for making predictions of cytotoxicity for a broad range of platinum-based antitumor compounds just from inspection of calculated or experimentally determined Pt NMR parameters.
View Article and Find Full Text PDFPt NMR chemical shifts for a series of large-sized photoactivable anticancer diazido-Pt(IV), homopiperizine-Pt(IV) and multifunctional azine-Pt(IV) complexes hardly to be probed experimentally and by sophisticated four-component and two-component relativistic calculations are predicted with high accuracy by density functional theory computational protocols. The calculated Pt NMR chemical shifts constitute a crucial descriptor for making highly predictive one-parameter quantitative structure activity relationships models that help in designing photoactivable Pt(IV)-based antitumor agents with high cytotoxicity and selectivity. Copyright © 2016 John Wiley & Sons, Ltd.
View Article and Find Full Text PDF(195) Pt NMR chemical shifts of octahedral Pt(IV) complexes with general formula [Pt(NO3 )n (OH)6 - n ](2-) , [Pt(NO3 )n (OH2 )6 - n ](4 - n) (n = 1-6), and [Pt(NO3 )6 - n - m (OH)m (OH2 )n ](-2 + n - m) formed by dissolution of platinic acid, H2 [Pt(OH)6 ], in aqueous nitric acid solutions are calculated employing density functional theory methods. Particularly, the gauge-including atomic orbitals (GIAO)-PBE0/segmented all-electron relativistically contracted-zeroth-order regular approximation (SARC-ZORA)(Pt) ∪ 6-31G(d,p)(E)/Polarizable Continuum Model computational protocol performs the best. Excellent second-order polynomial plots of δcalcd ((195) Pt) versus δexptl ((195) Pt) chemical shifts and δcalcd ((195) Pt) versus the natural atomic charge QPt are obtained.
View Article and Find Full Text PDFThe GIAO-PBE0/SARC-ZORA(Pt)∪6-31+G(d)(E) (E = main group element) computational protocol without including relativistic and spin-orbit effects is offered here for the accurate prediction of the (195)Pt NMR chemical shifts of a series of cis-(amine)2PtX2 (X = Cl, Br, I) anticancer agents (in total 42 complexes) and cis-diacetylbis(amine)platinum(II) complexes (in total 12) in solutions employing the Polarizable Continuum Model (PCM) solvation model, thus contributing to the difficult task of computation of (195)Pt NMR. Calculations of the torsional energy curves along the diabatic (unrelaxed) rotation around the Pt-N bond of the cis-(amine)2PtX2 (X = Cl, Br, I) anticancer agents revealed the high sensitivity of the (195)Pt NMR chemical shifts to conformational changes. The crucial effect of the conformational preferences on the electron density of the Pt central atom and consequently on the calculated δ(195)Pt chemical shifts was also corroborated by the excellent linear plots of δ(calcd)((195)Pt) chemical shifts vs.
View Article and Find Full Text PDF