Background: Glycemic control, after metabolic surgery, is achieved in two stages, initially with neuroendocrine alterations and in the long-term with sustainable weight loss. The resection of the gastric fundus, as the major site of ghrelin production, is probably related with optimized glucose regulation. The aim of the present study is to investigate whether the modification of laparoscopic Roux-en-Y gastric bypass (LRYGBP) with fundus resection offers superior glycemic control, compared to typical LRYGBP.
View Article and Find Full Text PDFPurpose: Ghrelin, one of the most studied gut hormones, is mainly produced by the gastric fundus. Abundant evidence exists from preclinical and clinical studies underlining its contribution to glucose regulation. In the following narrative review, the role of the gastric fundus in glucose regulation is summarized and we investigate whether its resection enhances glycemic control.
View Article and Find Full Text PDFThe neural stem cell niche is a key regulator participating in the maintenance, regeneration, and repair of the brain. Within the niche neural stem cells (NSC) generate new neurons throughout life, which is important for tissue homeostasis and brain function. NSCs are regulated by intrinsic and extrinsic factors with cellular metabolism being lately recognized as one of the most important ones, with evidence suggesting that it may serve as a common signal integrator to ensure mammalian brain homeostasis.
View Article and Find Full Text PDFThe signaling pathway centered on the transcription factor nuclear erythroid factor 2-like 2 (Nrf2) has emerged during the last 15 years as a target for the prevention and treatment of diseases broadly related with oxidative stress such as cancer, neurodegenerative and metabolic diseases. The roles of Nrf2 are expanding beyond general cytoprotection, and they encompass its crosstalk with other pathways as well as tissue-specific functions. The thyroid gland relies on reactive oxygen species for its main physiological function, the synthesis and secretion of thyroid hormones.
View Article and Find Full Text PDFBackground: Thyroid follicular cells have physiologically high levels of reactive oxygen species because oxidation of iodide is essential for the iodination of thyroglobulin (Tg) during thyroid hormone synthesis. Thyroid follicles (the functional units of the thyroid) also utilize incompletely understood autoregulatory mechanisms to defend against exposure to excess iodide. To date, no transcriptomic studies have investigated these phenomena in vivo.
View Article and Find Full Text PDFFamilial nontoxic multinodular goiter (MNG) is a rare disease. One of the associated genes is Kelch-like ECH-associated protein 1 (), which encodes the main inhibitor of nuclear factor erythroid 2-related transcription factor 2 (Nrf2), a central mediator of antioxidant responses. The association of with familial MNG is based on only two loss-of-function mutations identified in two families, only one of which included proper phenotyping and adequate demonstration of co-segregation of the phenotype and the mutation.
View Article and Find Full Text PDFSeveral single-nucleotide polymorphisms (SNPs) are known to increase the risk of Hashimoto's thyroiditis (HT); such SNPs reside in thyroid-specific genes or in genes related to autoimmunity, inflammation, and/or cellular defense to stress. The transcription factor Nrf2, encoded by , is a master regulator of the cellular antioxidant response. This study aimed to evaluate the impact of genetic variation in on the risk of developing HT.
View Article and Find Full Text PDFBackground: The thyroid gland has a special relationship with oxidative stress. While generation of oxidative substances is part of normal iodide metabolism during thyroid hormone synthesis, the gland must also defend itself against excessive oxidation in order to maintain normal function. Antioxidant and detoxification enzymes aid thyroid cells to maintain homeostasis by ameliorating oxidative insults, including during exposure to excess iodide, but the factors that coordinate their expression with the cellular redox status are not known.
View Article and Find Full Text PDFFibroblast growth factor 21 (Fgf21) is a hormone with emerging beneficial roles in glucose and lipid homeostasis. The interest in Fgf21 as a potential antidiabetic drug and the factors that regulate its production and secretion is growing. Statins are the most widely prescribed drug for the treatment of dyslipidemia.
View Article and Find Full Text PDFScavenger receptor class B type I (SR-BI) is primarily responsible for the selective uptake of cholesteryl esters (CE) of high-density lipoprotein (HDL) by the liver and other tissues. In the present study, we show that SR-BI-deficient (scarb1(-/-)) mice are resistant to diet-induced obesity, hepatic lipid deposition, and glucose intolerance after 24 weeks of being fed a western-type diet. No differences in energy expenditure or mitochondrial function could account for the observed phenotype.
View Article and Find Full Text PDFInsulinomas are the most common pancreatic neuroendocrine tumors. Most insulinomas are benign, small, intrapancreatic solid tumors and only large tumors have a tendency for malignancy. Most patients present with symptoms of hypoglycemia that are relieved with the administration of glucose.
View Article and Find Full Text PDFContext: Adrenal and extra-adrenal cortisol production may be involved in the development of metabolic syndrome (MetS).
Objective: To investigate the activity of the hypothalamic-pituitary-adrenal (HPA) axis and the expression of HSD11B1, nuclear receptor subfamily 3, group C, member 1 (glucocorticoid receptors) α (NR3C1α) and β (NR3C1β) in the liver, subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) of severely obese patients with and without MetS.
Methods: The study included 37 severely obese patients (BMI ≥ 40 kg/m(2)), 19 with MetS (MetS+ group) and 18 without (MetS- group), studied before and during bariatric surgery.
Context: The antioxidant transcription factor NFE2-related factor 2 (Nrf2), encoded by NFE2L2, has been implicated as mediator of thyroid cancer cell line resistance to proteasome inhibitors. However, the activity status of the Nrf2 pathway in human thyroid cancer remains unknown.
Objective: The aims of this study were assessment of the activity status of the Nrf2 pathway in papillary thyroid carcinoma (PTC) and investigation of its role(s) in antioxidant transcriptional responses and viability of cancer cells.
Introduction: The transcription factor NFE2-related factor 2 (Nrf2) is a central regulator of antioxidant and detoxification gene expression in response to electrophilic or oxidative stress. Nrf2 has recently been shown to cross-talk with metabolic pathways, and its gene deletion protected mice from high-fat-diet-(HFD-) induced obesity and insulin resistance. This study aimed to identify potential Nrf2-regulated genes of metabolic interest by comparing gene expression profiles of livers of wild-type (WT) versus Nrf2 knockout (Nrf2-KO) mice after a long-term HFD.
View Article and Find Full Text PDFObesity is a major health concern worldwide which is associated with increased risk of chronic diseases such as metabolic syndrome, cardiovascular disease and cancer. The elucidation of the molecular mechanisms involved in adipogenesis and obesogenesis is of essential importance as it could lead to the identification of novel biomarkers and therapeutic targets for the development of anti-obesity drugs. MicroRNAs (miRNAs) have been shown to play regulatory roles in several biological processes.
View Article and Find Full Text PDFLiver is uniquely capable to repair itself after injury. Multiple molecular and biochemical processes initiated after partial hepatectomy, lead to proliferation of all cells within the liver. MicroRNAs (miRNAs) are a class of highly abundant non-coding RNA molecules that cause post-transcriptional gene repression and are involved in several biological processes including cell cycle regulation and differentiation.
View Article and Find Full Text PDFObjective: Obesity is characterized by chronic oxidative stress. Fibroblast growth factor 21 (FGF21) has recently been identified as a novel hormone that regulates metabolism. NFE2-related factor 2 (Nrf2) is a transcription factor that orchestrates the expression of a battery of antioxidant and detoxification genes under both basal and stress conditions.
View Article and Find Full Text PDFAdipocyte differentiation (adipogenesis) is a highly controlled process known to be affected, among other factors, by the redox status of the cell. Nrf2 (NFE2-related factor 2) is a transcription factor that orchestrates the expression of a battery of antioxidant and detoxification genes under both basal and stress conditions. The present study investigated the activation of Nrf2 during adipocyte differentiation using as a model the mouse bone marrow-derived ST2 cell line.
View Article and Find Full Text PDFFibroblast growth factor-21 (FGF21) is a pleiotropic protein involved in glucose, lipid metabolism and energy homeostasis, with main tissues of expression being the liver and adipose tissue. Brown adipose tissue (BAT) is responsible for cold-induced thermogenesis in rodents. The role of FGF21 in BAT biology has not been investigated.
View Article and Find Full Text PDFCurr Opin Clin Nutr Metab Care
January 2011
Purpose Of Review: The vertebrate cap'n'collar family transcription factor Nrf2 and its invertebrate homologues SKN-1 (in worms) and CncC (in flies) function as master mediators of antioxidant and detoxification responses and regulators of the cellular redox state. Nrf2 controls gene expression programs that defend various tissues against diverse electrophilic stressors and oxidative insults, thus protecting the organism from disorders that are caused or exacerbated by such stresses. Moreover, studies on model organisms implicate the Nrf2 pathway in the prevention of aging-related diseases and suggest that SKN-1-regulated and CncC-regulated gene expression can promote longevity.
View Article and Find Full Text PDFThe beneficial effects of HMG-CoA (3-hydroxy-3-methyl-glutaryl-CoA) reductase inhibitors (statins) have been attributed not only to their cholesterol lowering effect but also to their pleiotropic actions and especially to their anti-oxidant activity. Nrf2 (NF-E2-related factor 2) is a transcription factor that orchestrates the transcriptional response of cells to oxidative stressors and electrophilic xenobiotics. In this study, primary mouse embryonic fibroblasts from wild type or Nrf2 knock out C57BL6J mice and ST-2 cells were used to investigate the implication of Nrf2 in the mediation of the anti-oxidant effects of statins and the possible involvement of PI3K/Akt pathway in this process.
View Article and Find Full Text PDFSome of the statins' pleiotropic actions have been attributed to their antioxidant activity. The Nrf2 transcription factor controls the expression of a number of protective genes in response to oxidative stress. In the present study, wistar rats, primary hepatocytes as well as ST2 cells, were employed to explore the potential role of Nrf2 in mediating the reported antioxidant effects of statins.
View Article and Find Full Text PDFSeveral authors have suggested a positive association between diabetes type 2 (DM2) and the C282Y and H63D mutations of the hereditary hemochromatosis gene but others have disputed it. There are also papers reporting an increased iron load in diabetes type 2 and a possible association with the pathogenesis of the disease. We therefore performed a study in 100 type 2 diabetics and 100 age and sex matched controls to assess the possibility that C282Y and H63D mutations constitute a risk factor for DM2 in Greece.
View Article and Find Full Text PDFA 43-year old Caucasian male with end-stage renal disease presented with painful skin lesions and high calcium phosphate product that did not respond to medical treatment. Skin biopsy confirmed the diagnosis of calciphylaxis. Urgent parathyroidectomy was performed and resulted in decrease in the calcium phosphate product and improvement of his symptoms and signs.
View Article and Find Full Text PDFBackground: Capecitabine is a tumor-activated oral fluoropyrimidine with established antitumor activity in breast and colorectal cancer. Hypertriglyceridemia associated with this drug has rarely been reported in the literature.
Case Report: This is a report of two patients who developed capecitabine-induced severe hypertriglyceridemia, together with an increase in total cholesterol levels.