Publications by authors named "Ioannis Chronakis"

The encapsulation of fish oil by monoaxial electrospraying using kafirin or zein proteins as hydrophobic wall materials was investigated. Kafirin resulted in spherical fish oil-loaded nanocapsules (>50% of capsules below 1 µm), whereas zein led to fish oil-loaded nanocapsules with non-spherical morphology (>80% of capsules below 1 µm). Both hydrophobic encapsulating materials interacted with fish oil, successfully entrapping the oil within the protein matrix as indicated by Fourier-transform infrared spectroscopy (FTIR) and Raman spectroscopy results.

View Article and Find Full Text PDF

Recent research highlights the pivotal role of the maternal gut microbiome during pregnancy in shaping offspring neurodevelopment. In this study, we investigated the impact of maternal intake of a multispecies probiotic formulation during a critical prenatal window (from gestational day 6 until birth) on neurodevelopmental trajectories in mice. Our findings demonstrate significant and persistent benefits in emotional behavior, gut microbiota composition, and expression of tight junction-related genes, particularly in male offspring, who exhibited heightened sensitivity to the probiotic intervention compared to females.

View Article and Find Full Text PDF

The encapsulation and the oxidative stability of cod liver fish oil (CLO) within coaxial electrosprayed (ethyl cellulose/CLO) core-(octenyl succinic anhydride, OSA-modified starch) shell, and monoaxial electrosprayed ethyl cellulose/CLO microcapsules were investigated. Core-shell (H-ECLO) and monoaxial (ECLO) electrosprayed microcapsules with an average diameter of 2.8 ± 1.

View Article and Find Full Text PDF

Vitamin A is an essential micronutrient that is readily oxidized. In this study, the encapsulation of vitamin A palmitate (AP) within a core-shell carbohydrate matrix by co-axial electrospray and its oxidative stability was evaluated. The electrosprayed core-shell microcapsules consisted of a shell of octenyl succinic anhydride (OSA) modified corn starch, maltose (Hi-Cap), and a core of ethyl cellulose-AP (average diameter of about 3.

View Article and Find Full Text PDF

The effect of the polarity of the direct current electric field on the "organization" of (ST44) probiotic cells within electrosprayed maltodextrin microcapsules was investigated. The generated electrostatic forces between the negatively surface-charged probiotic cells and the applied negative polarity on the electrospray nozzle, allowed to control the location of the cells towards the core of the electrosprayed microcapsules. This "organization" of the cells increased the evaporation of the solvent (water) and successively the glass transition temperature (Tg) of the electrosprayed microcapsules.

View Article and Find Full Text PDF

Oromucosal administration is an attractive non-invasive route. However, drug absorption is challenged by salivary flow and the mucosa being a significant permeability barrier. The aim of this study was to design and investigate a multi-layered nanofiber-on-foam-on-film (NFF) drug delivery system with unique properties and based on polysaccharides combined as i) mucoadhesive chitosan-based nanofibers, ii) a peptide loaded hydroxypropyl methylcellulose foam, and iii) a saliva-repelling backing film based on ethylcellulose.

View Article and Find Full Text PDF

We describe the study of a novel aptamer-based candidate for treatment of seropositive rheumatoid arthritis. The candidate is a nanoparticle-formulated cyclic citrullinated peptide aptamer, which targets autoantibodies and/or the immune reactions leading to antibody production. Due to its specificity, the peptide aptamer nanoparticles might not interfere with normal immune functions as seen with other disease-modifying antirheumatic drugs.

View Article and Find Full Text PDF

The sublingual mucosa is an attractive route for drug delivery, although challenged by a continuous flow of saliva that leads to a loss of drug by swallowing. It is of great benefit that drugs absorbed across the sublingual mucosa avoid exposure to the harsh environment of the gastro-intestinal lumen; this is especially beneficial for drugs of low physicochemical stability such as therapeutic peptides. In this study, a two-layered hybrid drug delivery system was developed for the sublingual delivery of the therapeutic peptide desmopressin.

View Article and Find Full Text PDF

Electrosprayed ethyl cellulose core-shell microcapsules were produced for the encapsulation of probiotic subsp. (Bifido). Ethyl cellulose (ETC) was used as a shell material with different core compounds (concentrated Bifido, Bifido-maltodextrin and Bifido-glycerol).

View Article and Find Full Text PDF

The aim of this study was to investigate binding interactions between β-lactoglobulin (BLG) and two different mucins, bovine submaxillary mucins (BSM) and porcine gastric mucin (PGM), using intrinsic and extrinsic fluorescence spectroscopies. Intrinsic fluorescence spectra showed an enhanced decrease of fluorescence intensity of BLG at all pH conditions when BLG was mixed with PGM rather than with BSM. We propose that, unlike BSM, the tertiary structure of PGM changes and the hydrophobic regions are exposed at pH 3 due to protonation of negatively charged residues.

View Article and Find Full Text PDF

Two types of single-walled carbon nanotubes (SWCNTs), HiPco- and carboxyl-SWCNT, are evaluated as drug carriers for the traditional anti-inflammatory drug methotrexate (MTX) and a small interfering RNA (siRNA) targeting NOTCH1 gene. The nanotubes are solubilized by PEGylation and covalently loaded with MTX. The coupling efficiency (CE%) of MTX is 77-79% for HiPco-SWCNT and 71-83% for carboxyl-SWCNT.

View Article and Find Full Text PDF

3D scaffolds are in the center of attention for tissue engineering applications. Whilst many studies have focused on the biological properties of scaffolds, less attention has been paid to meeting the biomechanics of the target tissues. In this work, we show how using the same original biomaterial, but different fabrication techniques can lead to a broad range of structural, mechanical, and biological characteristics.

View Article and Find Full Text PDF

Potato protein particles and fibers were produced using electrohydrodynamic processing (electrospray and electrospinning). The effect of different solvents and protein concentration on the morphology of the potato protein particles and fibers was investigated. Electrosprayed particles with average diameters ranging from 0.

View Article and Find Full Text PDF

Nicotine replacement therapy (NRT) formulations for oromucosal administration induce a delayed rise in nicotine blood levels as opposed to the immediate nicotine increase obtained from cigarette smoking, this being a shortcoming of the therapy. Here, we demonstrate that α-lactalbumin/polyethylene oxide (ALA/PEO) electrospun nanofibers constitute an efficient oromucosal delivery system for fast-onset nicotine delivery of high relevance for acute dosing NRT applications. , nicotine-loaded nanofibers showed fast disintegration in water, with a weight loss up to 40% within minutes, and a faster nicotine release (26.

View Article and Find Full Text PDF

Mucoadhesive chitosan-based electrospun nanofibers are promising candidates for overcoming challenges associated with sublingual drug delivery, yet studies focusing on evaluating the mucoadhesive properties of nanofibers for sublingual administration are limited. The aim was to elucidate the mucoadhesive properties of chitosan/polyethylene oxide (PEO) nanofibers focusing on how the degree of deacetylation (DDA, 53-96 %) of chitosan influenced their morphological and mucoadhesive properties. The mechanism of mucoadhesion was explained by the intermolecular interactions of chitosan with mucin from bovine submaxillary glands using quartz-crystal microbalance with dissipation monitoring and by adhesion of the nanofibers to ex vivo porcine sublingual mucosa.

View Article and Find Full Text PDF

Despite all the attempts to create advanced hemoglobin (Hb)-based oxygen carriers (HBOCs) employing an encapsulation platform, major challenges including attaining a high Hb loading and long circulation times still need to be overcome. Herein, the fabrication, for the first time, of nanoparticles fully made of Hb (Hb-NPs) employing the electrospray technique is reported. The Hb-NPs are then coated by antioxidant and self-polymerized poly(dopamine) (PDA) to minimize the conversion of Hb into nonfunctional methemoglobin (metHb).

View Article and Find Full Text PDF

Multiple drugs have been proposed for reducing harsh symptoms of human rheumatic diseases. However, a targeted therapy with mild to no side effects is still missing. In this study, we have prepared and tested a series of therapeutic nanoparticles for specific targeting of human neutrophils associated with rheumatoid arthritis.

View Article and Find Full Text PDF

Electrospinning and electrospraying are versatile techniques for the production of nano- to micro-scale fibers and particles. Over the past 2 decades, significant progresses have been made to advance the fundamental understandings of these electrohydrodynamic processes. Researchers have investigated different polymeric and non-polymeric substrates for producing submicron electrospun/electrosprayed materials of unique morphologies and physicochemical properties.

View Article and Find Full Text PDF

Electrospinning of neat chitosan is currently achieved by using strong acids or organic solvents, which limits the use of chitosan nanofibers as biocompatible scaffolds for drug delivery and tissue engineering. The aim was to elucidate the effect of specific acids generally recognized as safe (GRAS) on the properties of electrospun chitosan-based nanofibers. Electrospinning chitosan in dilute acetic acid or succinic acid with polyethylene oxide resulted in white and separated nanofibers, whereas nanofibers electrospun in dilute citric acid were transparent and interconnected.

View Article and Find Full Text PDF

Electrospun xanthan polysaccharide nanofibers (X) were developed as an encapsulation and delivery system of the poorly absorbed polyphenol compounds, gallic acid (GA) and (-)-epigallocatechin gallate (EGCG). Scanning electron microscopy was used to characterize the electrospun nanofibers, and controlled release studies were performed at pH 6.5 and 7.

View Article and Find Full Text PDF

The oxygen permeability and oxidative stability of fish oil-loaded electrosprayed capsules were studied by Electron Spin Resonance (ESR). Electrosprayed capsules with dextran as main biopolymer showed a significantly faster broadening (ΔH) of 16-doxyl-stearate ESR spectrum when compared to glucose syrup capsules. This finding indicates a higher oxygen permeability of dextran capsules than glucose syrup capsules, which is explained by a reduced average free volume in the glucose syrup matrix than in the dextran shell.

View Article and Find Full Text PDF

Mucins are long glycoprotein molecules responsible for the gel nature of the mucous layer that covers epithelial surfaces throughout the body. Mucins, as the major salivary proteins, are also important proteins for the food oral processing and digestion. The interactions of salivary mucins and saliva with several food proteins and food protein emulsions, as well as their functional properties related to the food oral processing were reviewed in this paper.

View Article and Find Full Text PDF

Xanthan-Chitosan (X-Ch) polysaccharides nanofibers were prepared using electrospinning processing as an encapsulation and delivery system of curcumin (Cu). The X-Ch-Cu nanofibers remained stable in aqueous HBSS medium at pH 6.5 and pH 7.

View Article and Find Full Text PDF

Chitosan particles loaded with the antigen ovalbumin (OVA) and the adjuvant Quil-A were produced by electrospray, using mixtures of water/ethanol/acetic acid as a solvent. Three different chitosans designed as HMC70, HMC85, and HMC90 (called as 705010, 855010, and 905010) were tested and its efficacy to be used in oral vaccine delivery applications was investigated. The morphology, size, and zeta potential of the produced particles were investigated, together with the encapsulation efficiency and release of OVA from the three chitosan formulations.

View Article and Find Full Text PDF

This study aimed to develop hybrid electrospun chitosan⁻phospholipid nanofibers and investigate the effect of phospholipid (P) content and chitosans (Ch) molecular weights (Mw) and degree of acetylation (DA), on the morphological, mechanical and mucoadhesive properties of the nanofibers. Electrospun nanofibers exhibited a smooth and uniform surface with average diameters ranging from 300 to 1000 nm, as observed by scanning electron microscopy (SEM). The average diameter of the nanofibers was observed to increase with the increase of the Mw and degree of deacetylation of Ch, and phospholipid content.

View Article and Find Full Text PDF