Publications by authors named "Ioannis A Kakadiaris"

Background: The pandemic emergent disease multisystem inflammatory syndrome in children (MIS-C) following coronavirus disease-19 infection can mimic endemic typhus. We aimed to use artificial intelligence (AI) to develop a clinical decision support system that accurately distinguishes MIS-C versus Endemic Typhus (MET).

Methods: Demographic, clinical, and laboratory features rapidly available following presentation were extracted for 133 patients with MIS-C and 87 patients hospitalized due to typhus.

View Article and Find Full Text PDF

This study assesses COVID-19 booster intentions and hesitancy in Texas, a state known for its diversity and libertarian values. A survey was conducted with 274 participants residing in Texas between June and July 2022. The analysis examined sociodemographic and health-related factors, trusted information sources, and preventive behaviors.

View Article and Find Full Text PDF
Article Synopsis
  • Primary care physicians are both excited and worried about the role of AI and machine learning in health care, with the potential for AI/ML to improve diagnosis and streamline tasks, but challenges remain for complex cases.
  • While AI/ML has shown success in areas like analyzing digital images and managing administrative duties, it struggles with recommending treatments for complicated diseases, and it may worsen health equity disparities.
  • For AI/ML to be effective in primary care, its applications should be limited, based on accurate data, and integrated into existing workflows, emphasizing the need for physician involvement in development and careful testing before implementation.
View Article and Find Full Text PDF

The foundations of Artificial Intelligence (AI), a field whose applications are of great use and concern for society, can be traced back to the early years of the second half of the 20th century. Since then, the field has seen increased research output and funding cycles followed by setbacks. The new millennium has seen unprecedented interest in AI progress and expectations with significant financial investments from the public and private sectors.

View Article and Find Full Text PDF

Hispanic communities have been disproportionately affected by economic disparities. These inequalities have put Hispanics at an increased risk for preventable health conditions. In addition, the CDC reports Hispanics to have 1.

View Article and Find Full Text PDF

Primary care is the largest healthcare delivery platform in the US. Facing the Artificial Intelligence and Machine Learning technology (AI/ML) revolution, the primary care community would benefit from a roadmap revealing priority areas and opportunities for developing and integrating AI/ML-driven clinical tools. This article presents a framework that identifies five domains for AI/ML integration in primary care to support care delivery transformation and achieve the Quintuple Aims of the healthcare system.

View Article and Find Full Text PDF

Surveillance-related datasets that have been released in recent years focus only on one specific problem at a time (e.g., pedestrian detection, face detection, or face recognition), while most of them were collected using visible spectrum (VIS) cameras.

View Article and Find Full Text PDF

Background Studies have demonstrated that the current US guidelines based on American College of Cardiology/American Heart Association (ACC/AHA) Pooled Cohort Equations Risk Calculator may underestimate risk of atherosclerotic cardiovascular disease ( CVD ) in certain high-risk individuals, therefore missing opportunities for intensive therapy and preventing CVD events. Similarly, the guidelines may overestimate risk in low risk populations resulting in unnecessary statin therapy. We used Machine Learning ( ML ) to tackle this problem.

View Article and Find Full Text PDF

The study of physical activity in cancer survivors has been limited to one cause, one effect relationships. In this exploratory study, we used recursive partitioning to examine multiple correlates that influence physical activity compliance rates in cancer survivors. African American breast cancer survivors ( = 267, Mean age = 54 years) participated in an online survey that examined correlates of physical activity.

View Article and Find Full Text PDF

Intravascular ultrasound (IVUS) refers to the medical imaging technique consisting of a miniaturized ultrasound transducer located at the tip of a catheter that can be introduced in the blood vessels providing high-resolution, cross-sectional images of their interior. Current methods for the generation of an IVUS image reconstruction from radio frequency (RF) data do not account for the physics involved in the interaction between the IVUS ultrasound signal and the tissues of the vessel. In this paper, we present a novel method to generate an IVUS image reconstruction based on the use of a scattering model that considers the tissues of the vessel as a distribution of three-dimensional point scatterers.

View Article and Find Full Text PDF

Clostridium difficile is a significant cause of nosocomial-acquired infection that results in severe diarrhea and can lead to mortality. Treatment options for C. difficile infection (CDI) are limited, however, new antibiotics are being developed.

View Article and Find Full Text PDF

Background: High resolution multiphoton and confocal microscopy has allowed the acquisition of large amounts of data to be analyzed by neuroscientists. However, manual processing of these images has become infeasible. Thus, there is a need to create automatic methods for the morphological reconstruction of 3D neuronal image stacks.

View Article and Find Full Text PDF

In this paper, we first offer an overview of advances in the field of distance metric learning. Then, we empirically compare selected methods using a common experimental protocol. The number of distance metric learning algorithms proposed keeps growing due to their effectiveness and wide application.

View Article and Find Full Text PDF

People with low vision, Alzheimer's disease, and autism spectrum disorder experience difficulties in perceiving or interpreting facial expression of emotion in their social lives. Though automatic facial expression recognition (FER) methods on 2-D videos have been extensively investigated, their performance was constrained by challenges in head pose and lighting conditions. The shape information in 3-D facial data can reduce or even overcome these challenges.

View Article and Find Full Text PDF

The challenges faced in analyzing optical imaging data from neurons include a low signal-to-noise ratio of the acquired images and the multiscale nature of the tubular structures that range in size from hundreds of microns to hundreds of nanometers. In this paper, we address these challenges and present a computational framework for an automatic, three-dimensional (3D) morphological reconstruction of live nerve cells. The key aspects of this approach are: (i) detection of neuronal dendrites through learning 3D tubular models, and (ii) skeletonization by a new algorithm using a morphology-guided deformable model for extracting the dendritic centerline.

View Article and Find Full Text PDF

Biometric systems use score normalization techniques and fusion rules to improve recognition performance. The large amount of research on score fusion for multimodal systems raises an important question: can we utilize the available information from unimodal systems more effectively? In this paper, we present a rank-based score normalization framework that addresses this problem. Specifically, our approach consists of three algorithms: 1) partition the matching scores into subsets and normalize each subset independently; 2) utilize the gallery versus gallery matching scores matrix (i.

View Article and Find Full Text PDF

Statistical shape models, such as Active Shape Models (ASMs), suffer from their inability to represent a large range of variations of a complex shape and to account for the large errors in detection of (point) landmarks. We propose a method, PDM-ENLOR (Point Distribution Model-based ENsemble of LOcal Regressors), that overcomes these limitations by locating each landmark individually using an ensemble of local regression models and appearance cues from selected landmarks. We first detect a set of reference landmarks which were selected based on their saliency during training.

View Article and Find Full Text PDF

Environmental factors affecting nutrient availability during development can cause predisposition to diseases later in life. To identify chemicals in the environment capable of altering nutrient mobilization, we analyzed yolk malabsorption in the zebrafish embryo, which relies on maternally-derived yolk for nutrition during its first week of life. Embryos of the transgenic zebrafish line HGn50D, which fluoresce in the yolk syncytial layer, were exposed from two to five days post fertilization to different chemicals.

View Article and Find Full Text PDF

Centerline tracing in dendritic structures acquired from confocal images of neurons is an essential tool for the construction of geometrical representations of a neuronal network from its coarse scale up to its fine scale structures. In this paper, we propose an algorithm for centerline extraction that is both highly accurate and computationally efficient. The main novelties of the proposed method are (1) the use of a small set of Multiscale Isotropic Laplacian filters, acting as self-steerable filters, for a quick and efficient binary segmentation of dendritic arbors and axons; (2) an automated centerline seed points detection method based on the application of a simple 3D finite-length filter.

View Article and Find Full Text PDF

Studies have shown that aortic calcification is associated with cardiovascular disease. In this study, a method for localization, centerline extraction, and segmentation of the thoracic aorta in noncontrast cardiac-computed tomography (CT) images, toward the detection of aortic calcification, is presented. The localization of the right coronary artery ostium slice is formulated as a regression problem whose input variables are obtained from simple intensity features computed from a pyramid representation of the slice.

View Article and Find Full Text PDF

Anatomical landmarks play an important role in many biomedical image analysis applications (e.g., registration and segmentation).

View Article and Find Full Text PDF

Asymmetric 3D to 2D face recognition has gained attention from the research community since the real-world application of 3D to 3D recognition is limited by the unavailability of inexpensive 3D data acquisition equipment. A 3D to 2D face recognition system explicitly relies on 3D facial data to account for uncontrolled image conditions related to head pose or illumination. We build upon such a system, which matches relit gallery textures with pose-normalized probe images, using the gallery facial meshes.

View Article and Find Full Text PDF