Background: Pre-neutrophils, while developing in the bone marrow, transcribe the gene and synthesize Activin-A protein, which they store and release at the earliest stage of their activation in the periphery. However, the role of neutrophil-derived Activin-A is not completely understood.
Methods: To address this issue, we developed a neutrophil-specific Activin-A-deficient animal model ( mice) and analyzed the immune response to Influenza A virus (IAV) infection.
The importance of macrophages in adipose tissue (AT) homeostasis and inflammation is well established. However, the potential cues that regulate their function remain incompletely understood. To bridge this important gap, we sought to characterize novel pathways involved using a mouse model of diet-induced obesity.
View Article and Find Full Text PDFNeonates exhibit increased susceptibility to respiratory viral infections, attributed to inflammation at the developing pulmonary air-blood interface. IFN I are antiviral cytokines critical to control viral replication, but also promote inflammation. Previously, we established a neonatal murine influenza virus (IV) model, which demonstrates increased mortality.
View Article and Find Full Text PDFInfluenza A viruses (IAVs) are common respiratory viruses. Mouse models of IAV infection are valuable to study the mechanisms of IAV infection and pathology. Here, we present a detailed protocol for IAV infection of mice via intranasal administration.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a recently emerged pathogen that has caused coronavirus disease 2019 (COVID-19), the worst pandemic of our times leading to tremendous loss of human life and unprecedented measures of social distancing. COVID-19 symptom manifestations range from asymptomatic disease to severe and lethal outcomes. Lack of previous exposure and immunity to SARS-CoV-2, and high infectivity of the virus have contributed to its broad spread across the globe.
View Article and Find Full Text PDFBackground: Although FoxP3 regulatory T (Treg) cells constitute a highly heterogeneous population, with different regulatory potential depending on the disease context, distinct subsets or phenotypes remain poorly defined. This hampers the development of immunotherapy for allergic and autoimmune disorders. The present study aimed at characterizing distinct FoxP3 Treg subpopulations involved in the suppression of Th2-mediated allergic inflammation in the lung.
View Article and Find Full Text PDFA central paradigm of immunity is that interferon (IFN)-mediated antiviral responses precede pro-inflammatory ones, optimizing host protection and minimizing collateral damage. Here, we report that for coronavirus disease 2019 (COVID-19) this paradigm does not apply. By investigating temporal IFN and inflammatory cytokine patterns in 32 moderate-to-severe patients with COVID-19 hospitalized for pneumonia and longitudinally followed for the development of respiratory failure and death, we reveal that IFN-λ and type I IFN production were both diminished and delayed, induced only in a fraction of patients as they became critically ill.
View Article and Find Full Text PDFNeutrophils and neutrophil-released meshwork structures termed neutrophil extracellular traps (NETs) are major mediators of thromboinflammation and emerging targets for therapy, yet the mechanisms and pathways that control the role of neutrophils in thromboinflammation remain poorly understood. Here, we explored the role of IFN-λ1/IL-29, a major antiviral cytokine recently shown to suppress the neutrophil migratory capacity, in prothrombotic and proNETotic functions of neutrophils. In an ex vivo human experimental setting of acute ST-segment elevation myocardial infarction (STEMI), we show that IFN-λ1/IL-29 hinders NET release and diminishes the amount of cytoplasmic TF in neutrophils.
View Article and Find Full Text PDF