Publications by authors named "Ioanna K Sideri"

We present an efficient strategy for on-surface engineering of organic metal-free supramolecular complexes with long-term spin protection. By vacuum deposition of azafullerene (CN) monomers on a pre-deposited template layer of [10]cycloparaphenylene ([10]CPP) nanohoops on Au(111) surface we exploit the molecular shape matching between the CN and [10]CPP for the azafullerene encapsulation with nanohoops in a guest-host complexation geometry. CN⊂[10]CPP supramolecular complexes self-assemble into an extended two-dimensional hexagonal lattice yielding a high density network of stable spin-1/2 radicals.

View Article and Find Full Text PDF

Transition metal dichalcogenides (TMDs) are promising 2D nanomaterials for diverse applications, but their intrinsic chemical inertness hinders their modification. Herein, a novel approach is presented for the photocatalytic acylation of 2H-MoS and 2H-MoSe, utilizing tetrabutyl ammonium decatungstate ((nBuN)WO) polyoxometalate complex as a catalyst and a conventional halogen lamp as a source of irradiation. By harnessing the semiconducting properties of TMDs, new avenues emerge for the functionalization of these materials.

View Article and Find Full Text PDF

The covalent modification of the metallic phase of MoS with a Hamilton-type ligand is presented, transforming MoS to a recognition platform which is able to embrace barbiturate moieties via hydrogen bonding. The successful hydrogen bonding formation is easily monitored by simple electrochemical assessments, if a ferrocene-labeled barbiturate analogue is utilized as a proof of concept. Full spectroscopic, thermal, and electron microscopy imaging characterization is provided for the newly formed recognition system, along with valuable insights concerning the electrochemical sensing.

View Article and Find Full Text PDF
Article Synopsis
  • * The study investigates how the surrounding chemical environment of cobalt, particularly the type of axial ligation (pyridine vs. imidazole), influences catalytic performance in acidic conditions.
  • * Results show that pyridine results in significantly better electrocatalytic performance, while imidazole offers impressive long-term stability.
View Article and Find Full Text PDF

Development of graphene/perovskite heterostructures mediated by polymeric materials may constitute a robust strategy to resolve the environmental instability of metal halide perovskites and provide barrierless charge transport. Herein, a straightforward approach for the growth of perovskite nano-crystals and their electronic communication with graphene is presented. Methylammonium lead bromide (CHNHPbBr) nano-crystals were grown in a poly[styrene-co-(2-(dimethylamino)ethyl methacrylate)], P[St-co-DMAEMA], bi-functional random co-polymer matrix and non-covalently immobilized on graphene.

View Article and Find Full Text PDF

The extensive research on carbon nanostructures and 2D nanomaterials will come to fruition once these materials steadily join everyday-life applications. Their chemical functionalization unlocks their potential as carriers of customized properties and counterparts to fabric fibers. The scope of the current review covers the chemical modification of carbon nanostructures and 2D nanomaterials for hybrid fabrics with enhanced qualities against critical operational and weather conditions, such as antibacterial, flame retardant, UV resistant, water repellent and high air and water vapor permeability activities.

View Article and Find Full Text PDF

The covalent functionalization of MoS with a perylenediimide (PDI) is reported and the study is accompanied by detailed characterization of the newly prepared MoS -PDI hybrid material. Covalently functionalized MoS interfacing organic photoactive species has shown electron and/or energy accepting, energy reflecting or bi-directional electron accepting features. Herein, a rationally designed PDI, unsubstituted at the perylene core to act as electron acceptor, forces MoS to fully demonstrate for the first time its electron donor capabilities.

View Article and Find Full Text PDF

Electrocatalytic processes, such as oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER) and carbon dioxide reduction reaction (CO RR), play key roles in various sustainable energy storage and production devices and their optimization in an ecological manner is of paramount importance for mankind. In this inclusive Review, we aspire to set the scene on doped carbon-based nanomaterials and their hybrids as precious-metal alternative electrocatalysts for these critical reactions in order for the research community not only to stay up-to-date, but also to get inspired and keep pushing forward towards their practical application in energy conversion.

View Article and Find Full Text PDF

The hydroacylation of Michael acceptors constitutes a useful tool for the formation of new C-C bonds. In this work, an environmentally friendly procedure was developed, utilizing 4cyanobenzaldehyde as the photoinitiator and household bulbs as the irradiation source. A great variety of substrates was well-tolerated, leading to good yields, and mechanistic experiments were performed to elucidate the catalyst's possible mechanistic pathway.

View Article and Find Full Text PDF

Photocatalysis, the use of light to promote organic transformations, is a field of catalysis that has received limited attention despite existing for over 100 years. With the revolution of photoredox catalysis in 2008, the rebirth or awakening of the field of photoorganocatalysis has brought new ideas and reactions to organic synthesis. This review will focus on the sudden outburst of literature regarding the use of small organic molecules as photocatalysts after 2013.

View Article and Find Full Text PDF