The aim of this manuscript is the experimental and numerical study regarding the influence of friction conditions on plastic deformation behavior by upsetting the A6082 aluminum alloy. The upsetting operation is characteristic of a significant number of metal forming processes: close die forging, open die forging, extrusion, and rolling. The purpose of the experimental tests was to determine: by the ring compression method, the friction coefficient for 3 surface lubrication conditions (dry, mineral oil, graphite in oil) by using the Coulomb friction model; the influence of strains on the friction coefficient; the influence of friction conditions on the formability of the A6082 aluminum alloy upsetted on hammer; study of non-uniformity of strains in upsetting by measuring hardness; change of the tool-sample contact surface and non-uniformity of strains distribution in a material by numerical simulation.
View Article and Find Full Text PDFThrough the approaches in this article, an attempt was made to analyze the bonding of Al-Cu bimetallic composite layers and the highlight of the diffusion at the boundary between the layers, by hot rolling. An aluminum alloy 6060 plate (EN-AW AlMgSi) and a Cu-ETP ½ hard (CW004A) plate were used. All of these layers of materials were TIG-welded, at both ends, into a heat-treated layered composite and subsequently subjected to the hot-rolling process.
View Article and Find Full Text PDFThe present paper describes and quantifies the behavior of a Zn-Al anticorrosive coating deposited on the surface of a steel wire before its drawing process. For the complete evaluation of this behavior, the drawing of these samples was performed on four wiredrawing lines, differing by the deformation angle 2 · α of the component dies of each line. For good agreement with industrial practice, the drawing series used a partial reduction of the section of 20%.
View Article and Find Full Text PDF