Heavy metal pollution has complex impacts on terrestrial ecosystems, affecting biodiversity, trophic relationships, species health, and the quality of natural resources. This study aims to validate a non-invasive method for detecting heavy metals (Cd, As, Zn, Cu, Cr) in micromammalian prey, which constitute the primary diet of the common genet (), a mesocarnivore sensitive to habitat degradation. By focusing on prey remains (hair and bones) rather than entire fecal samples, this approach leverages the genet's selective feeding habits to assess the bioaccumulation of contaminants in its preferred prey.
View Article and Find Full Text PDFIn Romania, huge quantities of gangue material from the mining activity practiced in the past were improperly stored and led to the pollution of the environment. Thus, this work is framed to manage the sterile dump of the "Radeș" mine (Alba, Romania) through a 12-week phytoremediation process. The efficient use of Robinia pseudoacacia was studied through the implementation, at the laboratory level, of a phytoremediation experiment based on various variants prepared by mixtures of gangue material, uncontaminated soil, and dehydrated sludge.
View Article and Find Full Text PDFSoil pollution with heavy metals is a problem for the whole geosystem. The aim of the research is to identify new solutions for extracting heavy metals from polluted soils so that they can be further exploited. To this end, investigations of the physicochemical characteristics of the soil sample under study were carried out.
View Article and Find Full Text PDFThe use of waste from industrial activities is of particular importance for environmental protection. Fly ash has a high potential in the production of construction materials. In the present study, the use of fly ash in the production of geopolymer paste and the effect of FeO, MgO and molarity of NaOH solution on the mechanical strength of geopolymer paste are presented.
View Article and Find Full Text PDFEnvironmental pollution has particular implications for the whole geosystem and increases the global risk to human and ecological health. In this regard, investigations were carried out on soil samples to perform the quality status assessment by determining: pH, texture, structure and metal concentration, as well as carrying out an assessment of anthropogenic activity by determining pollution indices: C (contamination factor), C (degree of contamination), PLI (pollution load index), E (ecological risk index) and PERI (potential ecological risk index). Analyses on soil samples showed high concentrations of metals (Cu: 113-2996 mg kg; Pb: 665-5466 mg kg; Cr: 40-187 mg kg; Ni: 221-1708 mg kg).
View Article and Find Full Text PDF