Research on current-induced domain wall (DW) motion in heavy metal/ferromagnet structures is crucial for advancing memory, logic, and computing devices. Here, we demonstrate that adjusting the angle between the DW conduit and the current direction provides an additional degree of control over the current-induced DW motion. A DW conduit with a 45° section relative to the current direction enables asymmetrical DW behavior: for one DW polarity, motion proceeds freely, while for the opposite polarity, motion is impeded or even blocked in the 45° zone, depending on the interfacial Dzyaloshinskii-Moriya interaction strength.
View Article and Find Full Text PDFStructural symmetry breaking in magnetic materials is responsible for the existence of multiferroics, current-induced spin-orbit torques and some topological magnetic structures. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii-Moriya interaction (DMI) exhibit identical spatial symmetry.
View Article and Find Full Text PDFMagnetization reversal by an electric current is essential for future magnetic data storage technology, such as magnetic random access memories. Typically, an electric current is injected into a pillar-shaped magnetic element, and switching relies on the transfer of spin momentum from a ferromagnetic reference layer (an approach known as spin-transfer torque). Recently, an alternative technique has emerged that uses spin-orbit torque (SOT) and allows the magnetization to be reversed without a polarizing layer by transferring angular momentum directly from the crystal lattice.
View Article and Find Full Text PDFRecent demonstrations of magnetization switching induced by in-plane current injection in heavy metal/ferromagnetic heterostructures have drawn increasing attention to spin torques based on orbital-to-spin momentum transfer. The symmetry, magnitude and origin of spin-orbit torques (SOTs), however, remain a matter of debate. Here we report on the three-dimensional vector measurement of SOTs in AlOx/Co/Pt and MgO/CoFeB/Ta trilayers using harmonic analysis of the anomalous and planar Hall effects.
View Article and Find Full Text PDFModern computing technology is based on writing, storing and retrieving information encoded as magnetic bits. Although the giant magnetoresistance effect has improved the electrical read out of memory elements, magnetic writing remains the object of major research efforts. Despite several reports of methods to reverse the polarity of nanosized magnets by means of local electric fields and currents, the simple reversal of a high-coercivity, single-layer ferromagnet remains a challenge.
View Article and Find Full Text PDFThe ability to reverse the magnetization of nanomagnets by current injection has attracted increased attention ever since the spin-transfer torque mechanism was predicted in 1996. In this paper, we review the basic theoretical and experimental arguments supporting a novel current-induced spin torque mechanism taking place in ferromagnetic (FM) materials. This effect, hereafter named spin-orbit (SO) torque, is produced by the flow of an electric current in a crystalline structure lacking inversion symmetry, which transfers orbital angular momentum from the lattice to the spin system owing to the combined action of SO and exchange coupling.
View Article and Find Full Text PDFThe propagation of magnetic domain walls induced by spin-polarized currents has launched new concepts for memory and logic devices. A wave of studies focusing on permalloy (NiFe) nanowires has found evidence for high domain-wall velocities (100 m s(-1); refs,), but has also exposed the drawbacks of this phenomenon for applications. Often the domain-wall displacements are not reproducible, their depinning from a thermally stable position is difficult and the domain-wall structural instability (Walker breakdown) limits the maximum velocity.
View Article and Find Full Text PDFMethods to manipulate the magnetization of ferromagnets by means of local electric fields or current-induced spin transfer torque allow the design of integrated spintronic devices with reduced dimensions and energy consumption compared with conventional magnetic field actuation. An alternative way to induce a spin torque using an electric current has been proposed based on intrinsic spin-orbit magnetic fields and recently realized in a strained low-temperature ferromagnetic semiconductor. Here we demonstrate that strong magnetic fields can be induced in ferromagnetic metal films lacking structure inversion symmetry through the Rashba effect.
View Article and Find Full Text PDF