Publications by authors named "Ioan Lascu"

Despite the harsh environmental conditions in the world's oldest and driest desert, some salt flat or 'salar' environments in the Atacama Desert host standing bodies of water known as saline lakes. Evaporite minerals deposited within saline lakes result from the equilibrium of environmental, sedimentological, and biogeochemical processes that occur in the salar; consequently, these minerals are sensitive records of human activities and ecological, evolutionary, and geological changes. The objective of this study was to evaluate feedbacks between physical, chemical, and microbial processes that culminate in distinct trends in brine chemistry, saline lake morphology, and associated evaporite sediments.

View Article and Find Full Text PDF

Near-shore marine sediments deposited during the Paleocene-Eocene Thermal Maximum at Wilson Lake, NJ, contain abundant conventional and giant magnetofossils. We find that giant, needle-shaped magnetofossils from Wilson Lake produce distinct magnetic signatures in low-noise, high-resolution first-order reversal curve (FORC) measurements. These magnetic measurements on bulk sediment samples identify the presence of giant, needle-shaped magnetofossils.

View Article and Find Full Text PDF

Bax is a major player in the apoptotic process, being at the core of the mitochondria permeabilization events. In spite of the major recent advances in the knowledge of Bax organization within the membrane, the precise behavior of the C-terminal helix α9 remains elusive, since it was absent from the resolved structure of active Bax. The Proline 168 (P168) residue, located in the short loop between α8 and α9, has been the target of site-directed mutagenesis experiments, with conflicting results.

View Article and Find Full Text PDF

Cystic fibrosis results from mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-dependent protein kinase A (PKA) and ATP-regulated chloride channel. Here, we demonstrate that nucleoside diphosphate kinase B (NDPK-B, NM23-H2) forms a functional complex with CFTR. In airway epithelia forskolin/IBMX significantly increases NDPK-B co-localisation with CFTR whereas PKA inhibitors attenuate complex formation.

View Article and Find Full Text PDF

Dynamin superfamily molecular motors use guanosine triphosphate (GTP) as a source of energy for membrane-remodeling events. We found that knockdown of nucleoside diphosphate kinases (NDPKs) NM23-H1/H2, which produce GTP through adenosine triphosphate (ATP)-driven conversion of guanosine diphosphate (GDP), inhibited dynamin-mediated endocytosis. NM23-H1/H2 localized at clathrin-coated pits and interacted with the proline-rich domain of dynamin.

View Article and Find Full Text PDF

Amyloid beta (Aβ) peptides produced by APP cleavage are central to the pathology of Alzheimer's disease. Despite widespread interest in this issue, the relationship between the auto-assembly and toxicity of these peptides remains controversial. One intriguing feature stems from their capacity to form anti-parallel ß-sheet oligomeric intermediates that can be converted into a parallel topology to allow the formation of protofibrillar and fibrillar Aβ.

View Article and Find Full Text PDF

Most nucleoside diphosphate kinases (NDPKs) are hexamers. The C-terminal tail interacting with the neighboring subunits is crucial for hexamer stability. In the NDPK from Mycobacterium tuberculosis (Mt) this tail is missing.

View Article and Find Full Text PDF

The nucleoside diphosphate kinase (Ndk) catalyzes the reversible transfer of the γ-phosphate from nucleoside triphosphate to nucleoside diphosphate. Ndks form hexamers or two types of tetramers made of the same building block, namely, the common dimer. The secondary interfaces of the Type I tetramer found in Myxococcus xanthus Ndk and of the Type II found in Escherichia coli Ndk involve the opposite sides of subunits.

View Article and Find Full Text PDF

The human nucleoside diphosphate (NDP) kinase A, product of the NME1 gene also named NM23-H1, is known as a metastasis suppressor protein. A naturally occurring variant, S120G, identified in neuroblastomas, possesses native three-dimensional structure and enzymatic activity but displays reduced conformational stability and a folding defect with the accumulation of a "molten globule" folding intermediate during refolding in vitro. As such intermediate has been postulated to be involved in amyloid formation, NDP kinase A may serve as a model protein for studying the relationship between folding intermediates and amyloid fibrils.

View Article and Find Full Text PDF

Nucleoside diphosphate kinases (NDPK) are encoded by the NME genes, also called NM23. They catalyze the transfer of gamma-phosphate from nucleoside triphosphates to nucleoside diphosphates by a ping-pong mechanism involving the formation of a high energy phospho-histidine intermediate [1, 2]. Besides their known functions in the control of intracellular nucleotide homeostasis, they are involved in multiple physiological and pathological cellular processes such as differentiation, development, metastastic dissemination or cilia functions.

View Article and Find Full Text PDF

The point mutation S120G in human nucleoside diphosphate kinase A, identified in patients with neuroblastoma, causes a protein folding defect. The urea-unfolded protein cannot refold in vitro, and accumulates as a molten globule folding intermediate. We show here that the trimethylamine-N-oxide (TMAO) corrects the folding defect and stimulated subunit association.

View Article and Find Full Text PDF

In the melanoma M14 cell line, we found that the antimetastatic protein NM23/nucleoside diphosphate kinase binds to the promoters of the oncogene cMYC and of P53, a gene often mutated in human cancer (Cervoni et al. [2006] J. Cell.

View Article and Find Full Text PDF

Amyloid fibrils are ordered beta-sheet protein or peptide polymers. The benzothiazole dye Thioflavin-T (ThT) shows a strong increase in fluorescence upon binding to amyloid fibrils and has hence become the most commonly used amyloid-specific dye. In spite of this widespread use, the mechanism underlying specific binding and fluorescence enhancement upon interaction with amyloid fibrils remains largely unknown.

View Article and Find Full Text PDF

Nucleoside diphosphate kinase (NDPK) catalyzes the transfer of gamma-phosphate from nucleoside triphosphates to nucleoside diphosphates. The subunit folding and the dimeric basic structural unit are remarkably the same for available structures but, depending on species, dimers self-associate to form hexamers or tetramers. The crystal structure of the Escherichia coli NDPK reveals a new tetrameric quaternary structure for this protein family.

View Article and Find Full Text PDF

Human nucleoside diphosphate (NDP) kinase A is a 'house-keeping' enzyme essential for the synthesis of nonadenine nucleoside (and deoxynucleoside) 5'-triphosphate. It is involved in complex cellular regulatory functions including the control of metastatic tumour dissemination. The mutation S120G has been identified in high-grade neuroblastomas.

View Article and Find Full Text PDF

The Nm23-H1/nucleoside diphosphate (NDP) kinase A is a metastasis suppressor, besides its enzymatic activity. The mutant S120G has been found in high-grade neuroblastomas. The mutant protein, once denatured in urea, is unable to refold in vitro.

View Article and Find Full Text PDF

Nm23 was the first metastasis suppressor gene identified. This gene encodes a NDP kinase that also exhibits other properties like histidine protein kinase and interactions with proteins and DNA. The S120G mutant of NDPK-A has been identified in aggressive neuroblastomas and has been found to reduce the metastasis suppressor effect of Nm23.

View Article and Find Full Text PDF

We isolated and analyzed by chromatin immunoprecipitation (ChIP) in viable M14 cells DNA sequences bound to the antimetastatic protein nucleoside diphosphate kinase (NM23/NDPK) to shed some light on the nuclear functions of this protein and on the mechanism by which it acts in development and cancer. We assessed the presence of selected sequences from promoters of platelet-derived growth factor A (PDGF-A), c-myc, myeloperoxidase (MPO), CD11b, p53, WT1, CCR5, ING1, and NM23-H1 genes in the cross-linked complexes. Quantitative PCR (Q-PCR) showed a substantial enrichment of the correlated oncosuppressor genes p53, WT1, ING1, and NM23-H1 in the immunoprecipitated (IP) DNA.

View Article and Find Full Text PDF

Background: The metastasis-suppressing role of the NM23 gene in the metastatic spread of solid tumors is still debated. We examined the role of NM23 in tumor development and metastatic dissemination by using transgenic mice that lack mouse NM23 (NM23-M1) in two mouse models of hepatocellular carcinoma (HCC) that recapitulate all steps of tumor progression.

Methods: We induced HCC in mice that contained (NM23-M1(+/+)) or lacked (NM23-M1(-/-)) NM23-M1 by diethylnitrosamine injection or by a crossing scheme that transferred a transgene that leads to liver expression of simian virus 40 large T antigen (ASV mice).

View Article and Find Full Text PDF

The [Het-s] infectious element of the fungus Podospora anserina is a prion protein involved in a genetically controlled cell death reaction termed heterokaryon incompatibility. Previous analyses indicate that [Het-s] propagates as a self-perpetuating amyloid aggregate. The HET-s protein is 289 amino acids in length.

View Article and Find Full Text PDF

Human isoforms A and B of nm23/nucleoside diphosphate (NDP) kinase, functionally important in development and cancer, have been reported to bind to DNA, and in particular isoform A to the PDGF-A promoter and isoform B to the c-myc promoter and to telomeric repeats. However, no direct proof of the binding in vivo has yet been obtained. To demonstrate this interaction, human erythroleukemic K562 cells were incubated with two different cross-linking reagents, formaldehyde or cis-diammine dichloro platinum H.

View Article and Find Full Text PDF

The HET-s protein of Podospora anserina is a fungal prion. This protein behaves as an infectious cytoplasmic element that is transmitted horizontally from one strain to another. Under the prion form, the HET-s protein forms aggregates in vivo.

View Article and Find Full Text PDF