Publications by authors named "Io-chun Hoi"

Loading quantum information deterministically onto a quantum node is an important step toward a quantum network. Here, we demonstrate that coherent-state microwave photons with an optimal temporal waveform can be efficiently loaded onto a single superconducting artificial atom in a semi-infinite one-dimensional (1D) transmission-line waveguide. Using a weak coherent state (the number of photons () contained in the pulse ≪1) with an exponentially rising waveform, whose time constant matches the decoherence time of the artificial atom, we demonstrate a loading efficiency of 94.

View Article and Find Full Text PDF

We theoretically investigate resonant dipole-dipole interaction (RDDI) between artificial atoms in a 1D geometry, implemented by N transmon qubits coupled through a transmission line. Similar to the atomic cases, RDDI comes from exchange of virtual photons of the continuous modes, and causes the so-called collective Lamb shift (CLS). To probe the shift, we effectively set one end of the transmission line as a mirror, and examine the reflection spectrum of the probe field from the other end.

View Article and Find Full Text PDF

We investigate the effective interaction between two microwave fields, mediated by a transmon-type superconducting artificial atom which is strongly coupled to a coplanar transmission line. The interaction between the fields and atom produces an effective cross-Kerr coupling. We demonstrate average cross-Kerr phase shifts of up to 20 degrees per photon with both coherent microwave fields at the single-photon level.

View Article and Find Full Text PDF

We show, in the context of single-photon detection, that an atomic three-level model for a transmon in a transmission line does not support the predictions of the nonlinear polarizability model known as the cross-Kerr effect. We show that the induced displacement of a probe in the presence or absence of a single photon in the signal field, cannot be resolved above the quantum noise in the probe. This strongly suggests that cross-Kerr media are not suitable for photon counting or related single-photon applications.

View Article and Find Full Text PDF

We have embedded an artificial atom, a superconducting transmon qubit, in a 1D open space and investigated the scattering properties of an incident microwave coherent state. By studying the statistics of the reflected and transmitted fields, we demonstrate that the scattered states can be nonclassical. In particular, by measuring the second-order correlation function, g((2)), we show photon antibunching in the reflected field and superbunching in the transmitted field.

View Article and Find Full Text PDF

We have embedded an artificial atom, a superconducting transmon qubit, in an open transmission line and investigated the strong scattering of incident microwave photons (∼6  GHz). When an input coherent state, with an average photon number N≪1 is on resonance with the artificial atom, we observe extinction of up to 99.6% in the forward propagating field.

View Article and Find Full Text PDF