Publications by authors named "Inzana J"

Background: Chronic pain in head, neck, shoulders and upper limbs is debilitating, and patients usually rely on pain medications or surgery to manage their symptoms. However, given the current opioid epidemic, non-pharmacological interventions that reduce pain, such as spinal cord stimulation (SCS), are needed. The purpose of this study was to review the evidence on paresthesia-free 10 kHz SCS therapy for neck and upper extremity pain.

View Article and Find Full Text PDF

Background: Expandable devices for transforaminal or posterior lumbar interbody fusion (TLIF and PLIF, respectively) may enable greater restoration of disc height, foraminal height, and stability within the interbody space than static spacers. Medial-lateral expansion may also increase stability and resistance to subsidence. This study evaluates the clinical and radiographic outcomes from early experience with a bidirectional expandable device.

View Article and Find Full Text PDF

Aims: Fixation of osteoporotic proximal humerus fractures remains challenging even with state-of-the-art locking plates. Despite the demonstrated biomechanical benefit of screw tip augmentation with bone cement, the clinical findings have remained unclear, potentially as the optimal augmentation combinations are unknown. The aim of this study was to systematically evaluate the biomechanical benefits of the augmentation options in a humeral locking plate using finite element analysis (FEA).

View Article and Find Full Text PDF

Objective: The aim of this study was to better understand current treatment trends and revision rates for lumbar disc herniation (LDH) in the workers' compensation (WC) population compared with other payer types.

Methods: This was a retrospective analysis of outpatient claims data from Florida and New York during 2014 to 2016.

Results: WC patients were less likely to undergo discectomy in Florida (15% vs 19%; P < 0.

View Article and Find Full Text PDF

Study Design: Systematic review.

Objectives: Superiority claims for medical devices are commonly derived from noninferiority trials, but interpretation of such claims can be challenging. This study aimed to () establish the prevalence of noninferiority and superiority designs among spinal device trials, () assess the frequency of post hoc superiority claims from noninferiority studies, and () critically evaluate the risk of bias in claims that could translate to misleading conclusions.

View Article and Find Full Text PDF

Lumbar disc herniation (LDH) is a frequent cause of low back pain and radiculopathy, disability, and diminution in quality of life. While nonsurgical care remains the mainstay of initial treatment, symptoms that persist for prolonged periods of time are well treated with discectomy surgery. A large body of evidence shows that, in patients with unremitting symptoms despite a reasonable period of nonsurgical treatment, discectomy surgery is safe and efficacious.

View Article and Find Full Text PDF

Lumbar disc herniation (LDH) is one of the most common spinal pathologies and can be associated with debilitating pain and neurological dysfunction. Discectomy is the primary surgical intervention for LDH and is typically successful. Yet, some patients experience recurrent LDH (RLDH) after discectomy, which is associated with worse clinical outcomes and greater socioeconomic burden.

View Article and Find Full Text PDF

Background Rigid interspinous process fixation (ISPF) may serve as a minimally disruptive adjunct to lumbar interbody fusion. Previous biomechanical assessments of ISPF have demonstrated particularly advantageous outcomes in stabilizing the sagittal plane. However, ISPF has not been well characterized in regard to its impact on interbody load, which has implications for the risk of cage migration or subsidence, and sagittal alignment.

View Article and Find Full Text PDF

Background: Total knee arthroplasty (TKA) is well established as a clinically successful and cost-effective procedure. The transition of the US healthcare system from a fee-for-service model to a value-based care model requires careful examination of patient care to ensure both quality and efficiency. Sterile-packed, single-use instruments have been introduced as a tool to help streamline the operating room (OR) logistics while reducing sterilization requirements.

View Article and Find Full Text PDF

Objective: To investigate the effect of sublaminar polyester tension bands on the biomechanics of the motion segments proximal to a long fusion construct.

Methods: This was a human cadaveric biomechanical study. Pure moments of 4 Nm and 8 Nm were applied to the native spine and the instrumented spine, respectively (n = 8).

View Article and Find Full Text PDF

Aims: Plating displaced proximal humeral fractures is associated with a high rate of screw perforation. Dynamization of the proximal screws might prevent these complications. The aim of this study was to develop and evaluate a new gliding screw concept for plating proximal humeral fractures biomechanically.

View Article and Find Full Text PDF

Introduction: Lumbar discectomy patients with large annular defects are at a high risk for reherniation and reoperation, which could be mitigated through the use of an annular closure device (ACD). To identify the most effective treatment pathways for this high-risk population, it is critical to understand the clinical outcomes and socioeconomic costs among reoperated patients as well as the utility of ACD for minimizing reoperation risk.

Methods: This was a post hoc analysis of a prospective, multicenter, randomized controlled trial (RCT) designed to investigate the safety and efficacy of an ACD.

View Article and Find Full Text PDF

The high rate of fixation failure in osteoporotic proximal humerus fractures indicate the need for improved solutions. Computer simulations may help to overcome the limitations of the gold standard biomechanical testing in evaluating the performance of new implants and enhance the effectivity and outcome of the design process. This study presents a framework for automated computational analysis that facilitates efficient and systematic evaluation of proximal humerus fracture plating under a variety of conditions including bone quality, fracture pattern, implant configuration and loading regime.

View Article and Find Full Text PDF

Biphasic calcium phosphate scaffolds formed via three dimensional (3D) printing technology to exhibit porosity and chemical resorbability to promote osseointegration often lack the strength and toughness required to withstand loading in bone tissue engineering applications. Herein, sintering and CaP:poly(caprolactone) (PCL) composite formation were explored to improve 3D printed scaffold strength and toughness. Hydroxyapatite and α-tricalcium phosphate (α-TCP) biphasic calcium powders were printed using phosphoric acid binder, which generated monetite and hydroxyapatite scaffolds.

View Article and Find Full Text PDF

The high rate of required reoperation indicates that treatment of fragility fractures at the proximal humerus still remains a major challenge in trauma surgery. Improved fixation approaches are needed. Several limitations of the conventional implant development process involving experimental testing could be overcome by using computer models that would allow systematic and efficient analyses.

View Article and Find Full Text PDF

Background: High incidence and increased mortality related to secondary, contralateral proximal femoral fractures may justify invasive prophylactic augmentation that reinforces the osteoporotic proximal femur to reduce fracture risk. Bone cement-based approaches (femoroplasty) may deliver the required strengthening effect; however, the significant variation in the results of previous studies calls for a systematic analysis and optimization of this method. Our hypothesis was that efficient generalized augmentation strategies can be identified via computational optimization.

View Article and Find Full Text PDF

Additive manufacturing, also known as 3D printing, has emerged over the past 3 decades as a disruptive technology for rapid prototyping and manufacturing. Vat polymerization, powder bed fusion, material extrusion, and binder jetting are distinct technologies of additive manufacturing, which have been used in a wide variety of fields, including biomedical research and tissue engineering. The ability to print biocompatible, patient-specific geometries with controlled macro- and micro-pores, and to incorporate cells, drugs and proteins has made 3D-printing ideal for orthopaedic applications, such as bone grafting.

View Article and Find Full Text PDF

Finite element analysis is commonly used to assist in the development and evaluation of orthopedic devices. The physics of these models are simplified through approximations that enable more efficient simulations, without compromising the accuracy of the relative comparisons between implant designs or configurations. This study developed and evaluated a technique to approximate the behavior of a finely threaded screw using a smooth cylinder with the threads implicitly represented through interfacial contact conditions.

View Article and Find Full Text PDF

Introduction: Osteosynthesis of anterior pubic ramus fractures can be challenging, especially in poor bone quality. The aim of the present study was to compare plate and retrograde endomedullary screw fixation of the superior pubic ramus with low bone mineral density (BMD).

Materials And Methods: Twelve human cadaveric hemi-pelvises were analyzed in a matched pair study design.

View Article and Find Full Text PDF

Fracture nonunions develop in 10%-20% of patients with fractures, resulting in prolonged disability. Current data suggest that bone union during fracture repair is achieved via proliferation and differentiation of skeletal progenitors within periosteal and soft tissues surrounding bone, while bone marrow stromal/stem cells (BMSCs) and other skeletal progenitors may also contribute. The NOTCH signaling pathway is a critical maintenance factor for BMSCs during skeletal development, although the precise role for NOTCH and the requisite nature of BMSCs following fracture is unknown.

View Article and Find Full Text PDF

Orthopaedic devices are the most common surgical devices associated with implant-related infections and Staphylococcus aureus (S. aureus) is the most common causative pathogen in chronic bone infections (osteomyelitis). Treatment of these chronic bone infections often involves combinations of antibiotics given systemically and locally to the affected site via a biomaterial spacer.

View Article and Find Full Text PDF

Surgical implant-associated bone infections (osteomyelitis) have severe clinical and socioeconomic consequences. Treatment of chronic bone infections often involves antibiotics given systemically and locally to the affected site in poly (methyl methacrylate) (PMMA) bone cement. Given the high antibiotic concentrations required to affect bacteria in biofilm, local delivery is important to achieve high doses at the infection site.

View Article and Find Full Text PDF

Background: Lead (Pb) exposure and obesity are co-occurring risk factors for decreased bone mass in the young, particularly in low socioeconomic communities.

Objectives: The goal of this study was to determine whether the comorbidities of Pb exposure and high-fat diet-induced obesity amplify skeletal deficits independently associated with each of these risk factors, and to explore associated mechanisms of the observed deficiencies.

Methods: Five-week-old male C57BL/6J mice were placed on low-fat (10% kcal, LFD) or high-fat (60% kcal, HFD) diets for 12 weeks.

View Article and Find Full Text PDF

Approximately 10% of skeletal fractures result in healing complications and non-union, while most fractures repair with appropriate stabilization and without pharmacologic intervention. It is the latter injuries that cannot be underestimated as the expenses associated with their treatment and subsequent lost productivity are predicted to increase to over $74 billion by 2015. During fracture repair, local mesenchymal stem/progenitor cells (MSCs) differentiate to form new cartilage and bone, reminiscent of events during skeletal development.

View Article and Find Full Text PDF

Mice are the small animal model of choice in biomedical research due to the low cost and availability of genetically engineered lines. However, the devices utilized in current mouse models of implant-associated bone infection have been limited to intramedullary or trans-cortical pins, which are not amenable to treatments involving extensive debridement of a full-thickness bone loss and placement of a segmental antibiotic spacer. To overcome these limitations, we developed a clinically faithful model that utilizes a locking fracture fixation plate to enable debridement of an infected segmental bone defect (full-thickness osteotomy) during a revision surgery, and investigated the therapeutic effects of placing an antibiotic-laden spacer in the segmental bone defect.

View Article and Find Full Text PDF