The Gleason score contributes significantly in predicting prostate cancer outcomes and selecting the appropriate treatment option, which is affected by well-known inter-observer variations. We present a novel deep learning-based automated Gleason grading system that does not require extensive region-level manual annotations by experts and/or complex algorithms for the automatic generation of region-level annotations. A total of 6664 and 936 prostate needle biopsy single-core slides (689 and 99 cases) from two institutions were used for system discovery and validation, respectively.
View Article and Find Full Text PDF