The fractions of various functional groups in graphene oxide (GO) are directly related to its electrical and chemical properties and can be controlled by various reduction methods like thermal, chemical and optical. However, a method with sufficient controllability to regulate the reduction process has been missing. In this work, a hybrid method of thermal and joule heating processes is demonstrated where a progressive control of the ratio of various functional groups can be achieved in a localized area.
View Article and Find Full Text PDFWe demonstrate a high-performance photodetector with multilayer tin diselenide (SnSe2) exfoliated from a high-quality crystal which was synthesized by the temperature gradient growth method. This SnSe2 photodetector exhibits high photoresponsivity of 5.11 × 105 A W-1 and high specific detectivity of 2.
View Article and Find Full Text PDFJ Phys Condens Matter
November 2017
We study the magnetotransport of holes in a multilayered black phosphorus in a temperature range of 1.9 to 21.5 K.
View Article and Find Full Text PDFIn this work, we report on the hydrogen (H) sensing behavior of reduced graphene oxide (RGO)/molybdenum disulfide (MoS) nano particles (NPs) based composite film. The RGO/MoS composite exhibited a highly enhanced H response (∼15.6%) for 200 ppm at an operating temperature of 60 °C.
View Article and Find Full Text PDFWe suggest a unimer-assisted exfoliation method for the exfoliation of van der Waals two-dimensional (2D) materials such as graphene, MoS, and h-BN and show that the micellar size is a critical parameter for enhancing the exfoliation efficiency. To explain the effectiveness of the unimers in the exfoliation, the influence of the micellar size of a biocompatible block copolymer, Pluronic F-68, is evaluated in view of the yield and thickness of exfoliated 2D flakes. By the addition of water-soluble alcohols, the surfactants exist in the form of a unimer, which facilitates the intercalation into the layered materials and their exfoliation.
View Article and Find Full Text PDFHfSe field effect transistors are systematically studied in order to selectively tune their electrical properties by optimizing layer thickness and oxygen plasma treatment. The optimized plasma-treated HfSe field effect transistors showed a high on/off ratio improvement of four orders of magnitude, from 27 to 10, a field effect mobility increase from 2.16 to 3.
View Article and Find Full Text PDFWe investigate the hopping conduction and random telegraph signal caused by various species of interface charge scatterers in a MoS multilayer field-effect transistor. The temperature dependence of the channel resistivity shows that at low temperatures and low carrier densities the carrier transport is via Mott variable range hopping with a hopping length changing from 41 to 80 nm. The hopping conduction was due to electron tunneling through localized band tail states formed by the scatterers located in the vicinity of the MoS layer.
View Article and Find Full Text PDFAn ambipolar dual-channel field-effect transistor (FET) with a WSe /MoS heterostructure formed by separately controlled individual channel layers is demonstrated. The FET shows a switchable ambipolar behavior with independent carrier transport of electrons and holes in the individual layers of MoS and WSe , respectively. Moreover, the photoresponse is studied at the heterointerface of the WSe /MoS dual-channel FET.
View Article and Find Full Text PDFWe fabricated a non-local spin valve with a thin layer of graphite with Co transparent electrodes. The spin-valve effect and spin precession were observed at room temperature. The magnitude of the mangetoresistance increases when temperature decreases.
View Article and Find Full Text PDFWe investigated the n-type doping effect of hydrazine on the electrical characteristics of a molybdenum disulphide (MoS2)-based field-effect transistor (FET). The threshold voltage of the MoS2 FET shifted towards more negative values (from -20 to -70 V) on treating with 100% hydrazine solution with the channel current increasing from 0.5 to 25 μA at zero gate bias.
View Article and Find Full Text PDFWe report a facile and highly effective n-doping method using hydrazine solution to realize enhanced electron conduction in a WSe2 field-effect transistor (FET) with three different metal contacts of varying work functions-namely, Ti, Co, and Pt. Before hydrazine treatment, the Ti- and Co-contacted WSe2 FETs show weak ambipolar behaviour with electron dominant transport, whereas in the Pt-contacted WSe2 FETs, the p-type unipolar behaviour was observed with the transport dominated by holes. In the hydrazine treatment, a p-type WSe2 FET (Pt contacted) was converted to n-type with enhanced electron conduction, whereas highly n-doped properties were achieved for both Ti- and Co-contacted WSe2 FETs with on-current increasing by three orders of magnitude for Ti.
View Article and Find Full Text PDFWe have fabricated a bilayer molybdenum disulphide (MoS2) transistor on boron nitride (BN) substrate and performed Raman spectroscopy and electrical measurements with this device. The characteristic Raman peaks show an upshift about 2.5 cm(-1) with the layer lying on BN, and a narrower line width in comparison with those on a SiO2 substrate.
View Article and Find Full Text PDFLateral and vertical two-dimensional heterostructure devices, in particular graphene-MoS2, have attracted profound interest as they offer additional functionalities over normal two-dimensional devices. Here, we have carried out electrical and optical characterization of graphene-MoS2 heterostructure. The few-layer MoS2 devices with metal electrode at one end and monolayer graphene electrode at the other end show nonlinearity in drain current with drain voltage sweep due to asymmetrical Schottky barrier height at the contacts and can be modulated with an external gate field.
View Article and Find Full Text PDFWe studied the physical characteristics of modified-DNA (M-DNA) double crossover crystals fabricated via substrate-assisted growth with various concentrations of four different divalent metallic ions, Cu(2+), Ni(2+), Zn(2+), and Co(2+). Atomic force microscopy (AFM) was used to test the stability of the M-DNA crystals with different metal ion concentrations. The AFM images show that M-DNA crystals formed without deformation at up to the critical concentrations of 6 mM of [Cu(2+)], 1.
View Article and Find Full Text PDFAlternating current dielectrophoresis (DEP) is an excellent technique to assemble nanoscale materials. For efficient DEP, the optimization of the key parameters like peak-to-peak voltage, applied frequency, and processing time is required for good device. In this work, we have assembled graphene oxide (GO) nanostructures mixed with platinum (Pt) nanoparticles between the micro gap electrodes for a proficient hydrogen gas sensors.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2014
In order to investigate the metal-insulator transition characteristics of VO2 devices annealed in reducing atmosphere after device fabrication at various temperature, electrical, chemical, and thermal characteristics are measured and analyzed. It is found that the sheet resistance and the insulator-metal transition point, induced by both voltage and thermal, decrease when the devices are annealed from 200 to 500 °C. The V 2p3/2 peak variation in X-ray photoelectron spectroscopy (XPS) characterization verifies the reduction of thin-films.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2014
Unintentionally formed nanocrystalline graphene (nc-G) can act as a useful seed for the large-area synthesis of a hexagonal boron nitride (h-BN) thin film with an atomically flat surface that is comparable to that of exfoliated single-crystal h-BN. A wafer-scale dielectric h-BN thin film was successfully synthesized on a bare sapphire substrate by assistance of nc-G, which prevented structural deformations in a chemical vapor deposition process. The growth mechanism of this nc-G-tailored h-BN thin film was systematically analyzed.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2014
The material properties of semiconductor nanowires are greatly affected by electrical, optical, and chemical processes occurring at their surfaces because of the very large surface-to-volume ratio. Precise control over doping as well as the surface charge properties has been demonstrated in thin films and nanowires for fundamental physics and application-oriented research. However, surface doping behavior is expected to differ markedly from bulk doping in conventional semiconductor materials.
View Article and Find Full Text PDFNext generation graphene-based electronics essentially need a dielectric layer with several requirements such as high flexibility, high transparency, and low process temperature. Here, we propose and investigate a flexible and transparent poly-4-vinylphenol and poly(melamine-co-formaldehyde) (PVP/PMF) insulating layer to achieve intrinsic graphene and an excellent gate dielectric layer at sub 200 °C. Chemical and electrical effects of PVP/PMF layer on graphene as well as its dielectric property are systematically investigated through various measurements by adjusting the ratio of PVP to PMF and annealing temperature.
View Article and Find Full Text PDFHexagonal boron nitride (h-BN) has received a great deal of attention as a substrate material for high-performance graphene electronics because it has an atomically smooth surface, lattice constant similar to that of graphene, large optical phonon modes, and a large electrical band gap. Herein, we report the large-scale synthesis of high-quality h-BN nanosheets in a chemical vapor deposition (CVD) process by controlling the surface morphologies of the copper (Cu) catalysts. It was found that morphology control of the Cu foil is much critical for the formation of the pure h-BN nanosheets as well as the improvement of their crystallinity.
View Article and Find Full Text PDF