Publications by authors named "Intrator N"

Many estuaries experience eutrophication, deoxygenation and warming, with potential impacts on greenhouse gas emissions. However, the response of NO production to these changes is poorly constrained. Here we applied nitrogen isotope tracer incubations to measure NO production under experimentally manipulated changes in oxygen and temperature in the Chesapeake Bay-the largest estuary in the United States.

View Article and Find Full Text PDF

Nitrous oxide (NO) is a potent greenhouse gas and a major cause of ozone depletion. One-third of atmospheric NO originates in aquatic environments. Reduction of NO to dinitrogen gas (N) requires the nitrous oxide reductase enzyme, which is encoded by the gene .

View Article and Find Full Text PDF

Integrated brain-machine interface signifies a transformative advancement in neurological monitoring and intervention modalities for events such as stroke, the leading cause of disability. Historically, stroke management relied on clinical evaluation and imaging. While today's stroke landscape integrates artificial intelligence for proactive clinical decision-making, mainly in imaging and stroke detection, it depends on clinical observation for early detection.

View Article and Find Full Text PDF

Background: Parkinson's disease (PD) often presents with subtle early signs, making diagnosis difficult. F-DOPA PET imaging provides a reliable measure of dopaminergic function and is a primary tool for early PD diagnosis. This study aims to evaluate the ability of machine-learning (ML) extracted EEG features to predict F-DOPA results and distinguish between PD and non-PD patients.

View Article and Find Full Text PDF

Background: More sensitive and less burdensome efficacy end points are urgently needed to improve the effectiveness of clinical drug development for Alzheimer disease (AD). Although conventional end points lack sensitivity, digital technologies hold promise for amplifying the detection of treatment signals and capturing cognitive anomalies at earlier disease stages. Using digital technologies and combining several test modalities allow for the collection of richer information about cognitive and functional status, which is not ascertainable via conventional paper-and-pencil tests.

View Article and Find Full Text PDF

Background: Cognitive decline remains highly underdiagnosed despite efforts to find novel cognitive biomarkers. Electroencephalography (EEG) features based on machine-learning (ML) may offer a non-invasive, low-cost approach for identifying cognitive decline. However, most studies use cumbersome multi-electrode systems.

View Article and Find Full Text PDF

Introduction: Cognitive Load Theory (CLT) relates to the efficiency with which individuals manipulate the limited capacity of working memory load. Repeated training generally results in individual performance increase and cognitive load decrease, as measured by both behavioral and neuroimaging methods. One of the known biomarkers for cognitive load is frontal theta band, measured by an EEG.

View Article and Find Full Text PDF

Background: Karate training likely leads to enhanced postural control, however, previous studies did not always include a healthy, physically active comparison group and the findings are inconsistent.

Research Question: Will the postural control of experienced karate practitioners be better than that of experienced swimmers, i.e.

View Article and Find Full Text PDF

Real-time functional magnetic resonance imaging (rt-fMRI) has revived the translational perspective of neurofeedback (NF). Particularly for stress management, targeting deeply located limbic areas involved in stress processing has paved new paths for brain-guided interventions. However, the high cost and immobility of fMRI constitute a challenging drawback for the scalability (accessibility and cost-effectiveness) of the approach, particularly for clinical purposes.

View Article and Find Full Text PDF

Volitional neural modulation using neurofeedback has been indicated as a potential treatment for chronic conditions that involve peripheral and central neural dysregulation. Here we utilized neurofeedback in patients suffering from Fibromyalgia - a chronic pain syndrome that involves sleep disturbance and emotion dysregulation. These ancillary symptoms, which have an amplificating effect on pain, are known to be mediated by heightened limbic activity.

View Article and Find Full Text PDF

This article presents a novel connectivity analysis method that is suitable for multi-node networks such as EEG, MEG or EcOG electrode recordings. Its diagnostic power and ability to interpret brain states in schizophrenia is demonstrated on a set of 50 subjects that constituted of 25 healthy and 25 diagnosed with schizophrenia and treated with medication. The method can also be used for the automatic detection of schizophrenia; it exhibits higher sensitivity than state-of-the-art methods with no false positives.

View Article and Find Full Text PDF

Many studies investigated age-related changes in gene expression of different tissues, with scarce agreement due to the high number of affecting factors. Similarly, no consensus has been reached on which genes change expression as a function of age and not because of environment. In this study we analysed gene expression of T lymphocytes from 27 healthy monozygotic twin couples, with ages ranging over whole adult lifespan (22 to 98 years).

View Article and Find Full Text PDF

Assessment of body kinematics during performance of daily life activities at home plays a significant role in medical condition monitoring of elderly people and patients with neurological disorders. The affordable and non-wearable Microsoft Kinect ("Kinect") system has been recently used to estimate human subject kinematic features. However, the Kinect suffers from a limited range and angular coverage, distortion in skeleton joints' estimations, and erroneous multiplexing of different subjects' estimations to one.

View Article and Find Full Text PDF

Recent evidence suggests that learned self-regulation of localized brain activity in deep limbic areas such as the amygdala, may alleviate symptoms of affective disturbances. Thus far self-regulation of amygdala activity could be obtained only via fMRI guided neurofeedback, an expensive and immobile procedure. EEG on the other hand is relatively inexpensive and can be easily implemented in any location.

View Article and Find Full Text PDF

The amygdala has a pivotal role in processing traumatic stress; hence, gaining control over its activity could facilitate adaptive mechanism and recovery. To date, amygdala volitional regulation could be obtained only via real-time functional magnetic resonance imaging (fMRI), a highly inaccessible procedure. The current article presents high-impact neurobehavioral implications of a novel imaging approach that enables bedside monitoring of amygdala activity using fMRI-inspired electroencephalography (EEG), hereafter termed amygdala-electrical fingerprint (amyg-EFP).

View Article and Find Full Text PDF

Electroencephalographic (EEG) analysis has emerged as a powerful tool for brain state interpretation and diagnosis, but not for the diagnosis of mental disorders; this may be explained by its low spatial resolution or depth sensitivity. This paper concerns the diagnosis of schizophrenia using EEG, which currently suffers from several cardinal problems: it heavily depends on assumptions, conditions and prior knowledge regarding the patient. Additionally, the diagnostic experiments take hours, and the accuracy of the analysis is low or unreliable.

View Article and Find Full Text PDF

It is known that acoustic heart sounds carry significant information about the mechanical activity of the heart. In this paper, we present a novel type of cardiac monitoring based on heart sound analysis. Specifically, we study two morphological features and their associations with physiological changes from the baseline state.

View Article and Find Full Text PDF

Background: The search for a validated neuroimaging-based brain marker in psychiatry has thus far been fraught with both clinical and methodological difficulties. The present study aimed to apply a novel data-driven machine-learning approach to functional Magnetic Resonance Imaging (fMRI) data obtained during a cognitive task in order to delineate the neural mechanisms involved in two schizophrenia subgroups: schizophrenia patients with and without Obsessive-Compulsive Disorder (OCD).

Methods: 16 schizophrenia patients with OCD ("schizo-obsessive"), 17 pure schizophrenia patients, and 20 healthy controls underwent fMRI while performing a working memory task.

View Article and Find Full Text PDF

Contemporary biomedicine is producing large amount of data, especially within the fields of "omic" sciences. Nevertheless, other fields, such as neuroscience, are producing similar amount of data by using non-invasive techniques such as imaging, functional magnetic resonance and electroencephalography. Nowadays a big challenge and a new research horizon for Systems Biology is to develop methods to integrate and model this data in an unifying framework capable to disentangle this amazing complexity.

View Article and Find Full Text PDF

The transition from being fully awake to pre-sleep occurs daily just before falling asleep; thus its disturbance might be detrimental. Yet, the neuronal correlates of the transition remain unclear, mainly due to the difficulty in capturing its inherent dynamics. We used an EEG theta/alpha neurofeedback to rapidly induce the transition into pre-sleep and simultaneous fMRI to reveal state-dependent neural activity.

View Article and Find Full Text PDF

This work introduces a general framework for producing an EEG Finger-Print (EFP) which can be used to predict specific brain activity as measured by fMRI at a given deep region. This new approach allows for improved EEG spatial resolution based on simultaneous fMRI activity measurements. Advanced signal processing and machine learning methods were applied on EEG data acquired simultaneously with fMRI during relaxation training guided by on-line continuous feedback on changing alpha/theta EEG measure.

View Article and Find Full Text PDF

The unique role of the EEG alpha rhythm in different states of cortical activity is still debated. The main theories regarding alpha function posit either sensory processing or attention allocation as the main processes governing its modulation. Closing and opening eyes, a well-known manipulation of the alpha rhythm, could be regarded as attention allocation from inward to outward focus though during light is also accompanied by visual change.

View Article and Find Full Text PDF

Time of arrival (ToA) estimation is essential for many types of remote sensing applications including radar, sonar, and underground exploration. The standard method for ToA estimation employs a matched filter for computing the maximum likelihood estimator (MLE) for ToA. The accuracy of the MLE decreases rapidly whenever the amount of noise in a received signal rises above a certain threshold.

View Article and Find Full Text PDF

Actions are often internally guided, reflecting our covert will and intentions. The dorsomedial prefrontal cortex, including the pre-Supplementary Motor Area (pre-SMA), has been implicated in the internally generated aspects of action planning, such as choice and intention. Yet, the mechanism by which this area interacts with other cognitive brain regions such as the dorsolateral prefrontal cortex, a central node in decision-making, is still unclear.

View Article and Find Full Text PDF