We demonstrate efficient anti reflection coatings based on adiabatic index matching obtained via nano-imprint lithography. They exhibit high total transmission, achromaticity (99.5% < T < 99.
View Article and Find Full Text PDFThe quality factor, , of photonic resonators permeates most figures of merit in applications that rely on cavity-enhanced light-matter interaction such as all-optical information processing, high-resolution sensing, or ultralow-threshold lasing. As a consequence, large-scale efforts have been devoted to understanding and efficiently computing and optimizing the of optical resonators in the design stage. This has generated large know-how on the relation between physical quantities of the cavity, e.
View Article and Find Full Text PDFDewetted, SiGe nanoparticles have been successfully exploited for light management in the visible and near-infrared, although their scattering properties have been so far only qualitatively studied. Here, we demonstrate that the Mie resonances sustained by a SiGe-based nanoantenna under tilted illumination, can generate radiation patterns in different directions. We introduce a novel dark-field microscopy setup that exploits the movement of the nanoantenna under the objective lens to spectrally isolate Mie resonances contribution to the total scattering cross-section during the same measurement.
View Article and Find Full Text PDFWe use low-resolution optical lithography joined with solid state dewetting of crystalline, ultra-thin silicon on insulator (c-UT-SOI) to form monocrystalline, atomically smooth, silicon-based Mie resonators in well-controlled large periodic arrays. The dewetted islands have a typical size in the 100 nm range, about one order of magnitude smaller than the etching resolution. Exploiting a 2 µm thick SiO layer separating the islands and the underlying bulk silicon wafer, we combine the resonant modes of the antennas with the etalon effect.
View Article and Find Full Text PDFMaterials featuring anomalous suppression of density fluctuations over large length scales are emerging systems known as disordered hyperuniform. The underlying hidden order renders them appealing for several applications, such as light management and topologically protected electronic states. These applications require scalable fabrication, which is hard to achieve with available top-down approaches.
View Article and Find Full Text PDFRecent theories proposed a deep revision of the well-known expression for the Purcell factor, with counterintuitive effects, such as complex modal volumes and non-Lorentzian local density of states. We experimentally demonstrate these predictions in tailored coupled cavities on photonic crystal slabs with relatively low optical losses. Near-field hyperspectral imaging of quantum dot photoluminescence is proved to be a direct tool for measuring the line shape of the local density of states.
View Article and Find Full Text PDFWe propose a force sensor, with optical detection, based on a reconfigurable multi-cavity photonic molecule distributed over two parallel photonic crystal membranes. The system spectral behaviour is described with an analytical model based on coupled mode theory and validated by finite difference time domain simulations. The deformation of the upper photonic crystal membrane, due to a localized vertical force, is monitored by the relative spectral positions of the photonic molecule resonances.
View Article and Find Full Text PDFRandom dielectrics defines a class of non-absorbing materials where the index of refraction is randomly arranged in space. Whenever the transport mean free path is sufficiently small, light can be confined in modes with very small volume. Random photonic modes have been investigated for their basic physical insights, such as Anderson localization, and recently several applications have been envisioned in the field of renewable energies, telecommunications, and quantum electrodynamics.
View Article and Find Full Text PDFMany of the most advanced applications of semiconductor quantum dots (QDs) in quantum information technology require a fine control of the QDs' position and confinement potential, which cannot be achieved with conventional growth techniques. Here, a novel and versatile approach for the fabrication of site-controlled QDs is presented. Hydrogen incorporation in GaAsN results in the formation of N-2H and N-2H-H complexes, which neutralize all the effects of N on GaAs, including the N-induced large reduction of the bandgap energy.
View Article and Find Full Text PDFThe optical behavior of coupled systems, in which the breaking of parity and time-reversal symmetry occurs, is drawing increasing attention to address the physics of the exceptional point singularity, i.e., when the real and imaginary parts of the normal-mode eigenfrequencies coincide.
View Article and Find Full Text PDFWe present experimental evidence for the different mechanisms driving the fluctuations of the local density of states (LDOS) in disordered photonic systems. We establish a clear link between the microscopic structure of the material and the frequency correlation function of LDOS accessed by a near-field hyperspectral imaging technique. We show, in particular, that short- and long-range frequency correlations of LDOS are controlled by different physical processes (multiple or single scattering processes, respectively) that can be-to some extent-manipulated independently.
View Article and Find Full Text PDFTailoring the electromagnetic field at the nanoscale has led to artificial materials exhibiting fascinating optical properties unavailable in naturally occurring substances. Besides having fundamental implications for classical and quantum optics, nanoscale metamaterials provide a platform for developing disruptive novel technologies, in which a combination of both the electric and magnetic radiation field components at optical frequencies is relevant to engineer the light-matter interaction. Thus, an experimental investigation of the spatial distribution of the photonic states at the nanoscale for both field components is of crucial importance.
View Article and Find Full Text PDFDisordered photonic materials can diffuse and localize light through random multiple scattering, offering opportunities to study mesoscopic phenomena, control light-matter interactions, and provide new strategies for photonic applications. Light transport in such media is governed by photonic modes characterized by resonances with finite spectral width and spatial extent. Considerable steps have been made recently towards control over the transport using wavefront shaping techniques.
View Article and Find Full Text PDFWe propose a way to engineer the design of photonic molecules, realized by coupling two photonic crystal cavities, that allows an accurate control of the parity of their ground states. The spatial distribution of the fundamental mode of photonic molecules can be tuned from a bonding to an antibonding character by a local and continuous modification of the dielectric environment in between the two coupled cavities. In the systems that we investigate the transition could be experimentally accomplished by post-fabrication methods in either a reversible or an irreversible way.
View Article and Find Full Text PDFAs materials functionality becomes more dependent on local physical and electronic properties, the importance of optically probing matter with true nanoscale spatial resolution has increased. In this work, we mapped the influence of local trap states within individual nanowires on carrier recombination with deeply subwavelength resolution. This is achieved using multidimensional nanospectroscopic imaging based on a nano-optical device.
View Article and Find Full Text PDFA revisited realization of the Young's double slit experiment is introduced to directly probe the photonic mode symmetry by photoluminescence experiments. We experimentally measure the far field angular emission pattern of quantum dots embedded in photonic molecules. The experimental data well agree with predictions from Young's interference and numerical simulations.
View Article and Find Full Text PDFWe report on the observation of Anderson localization of near-visible light in two-dimensional systems. Our structures consist of planar waveguides in which disorder is introduced by randomly placing pores with controlled diameter and density. We show how to design structures in which localization can be observed and describe both the realization of the materials and the actual observation of Anderson localized modes by near-field scanning microscopy.
View Article and Find Full Text PDFWe demonstrate the nonresonant magnetic interaction at optical frequencies between a photonic crystal microcavity and a metallized near-field microscopy probe. This interaction can be used to map and control the magnetic component of the microcavity modes. The metal coated tip acts as a microscopic conductive ring, which induces a magnetic response opposite to the inducing magnetic field.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
October 2008
We report on the realization of a rewritable and local source inside a Si-based photonic crystal microcavity by infiltrating a solution of colloidal PbS quantum dots inside a single pore of the structure. We show that the resulting spontaneous emission from the source is both spatially and spectrally redistributed due to the mode structure of the photonic crystal cavity. The coupling of the quantum dot emission to the cavity mode is analyzed by mapping the luminescence signal of the infiltrated solution with a scanning near-field optical microscope at room temperature.
View Article and Find Full Text PDFTwo-dimensional near-field images of light transmitted through a disordered dielectric structure have been measured for two probe wavelengths. From these data, the 2D spatial dependence of the intensity correlation function, C(deltaR-->), has been extracted. We observe that the spatial dependence of C is dominated by a rapidly varying feature determined by the wavelength of the probe light and the average refractive index of the material, as expected by theory.
View Article and Find Full Text PDFTwo-dimensional near-field images of speckle patterns formed by optical waves transmitted through a disordered porous silica glass sample are measured. The corresponding 2D intensity correlation function, C, is extracted. The subwavelength spatial resolution of near-field microscopy allows us to resolve in the spatial distribution of C the expected subwavelength oscillations and to follow their dependence on the excitation wavelength.
View Article and Find Full Text PDFSpatially resolved photoluminescence spectra of a single quantum well are recorded by near-field spectroscopy. A set of over four hundred spectra displaying sharp emission lines from localized excitons is subject to a statistical analysis of the two-energy autocorrelation function. An accurate comparison with a quantum theory of the exciton center-of-mass motion in a two-dimensional spatially correlated disordered potential reveals clear signatures of quantum mechanical energy level repulsion, giving the spatial and energetic correlations of excitons in disordered quantum systems.
View Article and Find Full Text PDFExcitons in a GaAs quantum wire were studied in high-resolution photoluminescence experiments performed at a temperature of about 10 K with a spatial resolution of 160 nm and a spectral resolution of 100 microeV. We report the observation of quasi-one-dimensional excitons which are delocalized over a length of up to several micrometres along the quantum wire. Such excitons give rise to a 10 meV broad luminescence band, representing a superposition of transitions between different delocalized states.
View Article and Find Full Text PDF