Biochem Biophys Res Commun
November 2024
In mammalian cells, the Golgi apparatus undergoes fragmentation for its correct partition into two daughter cells during mitosis. Several Golgi structural proteins have been demonstrated to regulate Golgi disassembly/reassembly and spindle formation. However, it is largely unknown whether Golgi proteins mediate other major events in mitosis.
View Article and Find Full Text PDFGolgin tethers are known to mediate vesicular transport in the secretory pathway, whereas it is relatively unknown whether they may mediate cellular stress response within the cell. Here, we describe a cellular stress response during heat shock stress via SUMOylation of a Golgin tether, Golgin45. We found that Golgin45 is a SUMOylated Golgin via SUMO1 under steady state condition.
View Article and Find Full Text PDFHostile microenvironment of cancer cells provoke a stressful condition for endoplasmic reticulum (ER) and stimulate the expression and secretion of ER chaperones, leading to tumorigenic effects. However, the molecular mechanism underlying these effects is largely unknown. In this study, we reveal that the last four residues of ER chaperones, which are recognized by KDEL receptor (KDELR), is required for cell proliferation and migration induced by secreted chaperones.
View Article and Find Full Text PDFKDEL receptor-1 maintains homeostasis in the early secretory pathway by capturing and retrieving ER chaperones to the ER during heavy secretory activity. Unexpectedly, a fraction of the receptor is also known to reside in the plasma membrane (PM), although it is largely unknown exactly how the KDEL receptor gets exported from the Golgi and travels to the PM. We have previously shown that a Golgi scaffolding protein (ACBD3) facilitates KDEL receptor localization at the Golgi via the regulating cargo wave-induced cAMP/PKA-dependent signaling pathway.
View Article and Find Full Text PDFKDEL receptor (KDELR) is a key protein that recycles escaped endoplasmic reticulum (ER) resident proteins from the Golgi apparatus back to the ER and maintains a dynamic balance between these two organelles in the early secretory pathway. Studies have shown that this retrograde transport pathway is partly regulated by two KDELR-interacting proteins, acyl-CoA-binding domain-containing 3 (ACBD3), and cyclic AMP-dependent protein kinase A (PKA). However, whether Golgi-localized ACBD3, which was first discovered as a PKA-anchoring protein in mitochondria, directly interacts with PKA at the Golgi and coordinates its signaling in Golgi-to-ER traffic has remained unclear.
View Article and Find Full Text PDFRetro-2 directly interacts with an ER exit site protein, Sec16A, inhibiting ER exit of a Golgi tSNARE, Syntaxin5, which results in rapid re-distribution of Syntaxin5 to the ER. Recently, it was shown that SARS-CoV-2 infection disrupts the Golgi apparatus within 6-12 h, while its replication was effectively inhibited by Retro-2 in cultured human lung cells. Yet, exactly how Retro-2 may influence ultrastructure of the Golgi apparatus have not been thoroughly investigated.
View Article and Find Full Text PDFAltered glycosylation plays an important role during development and is also a hallmark of increased tumorigenicity and metastatic potentials of several cancers. We report here that Tankyrase-1 (TNKS1) controls protein glycosylation by Poly-ADP-ribosylation (PARylation) of a Golgi structural protein, Golgin45, at the Golgi. TNKS1 is a Golgi-localized peripheral membrane protein that plays various roles throughout the cell, ranging from telomere maintenance to Glut4 trafficking.
View Article and Find Full Text PDFBackground: KDEL receptor helps establish cellular equilibrium in the early secretory pathway by recycling leaked ER-chaperones to the ER during secretion of newly synthesized proteins. Studies have also shown that KDEL receptor may function as a signaling protein that orchestrates membrane flux through the secretory pathway. We have recently shown that KDEL receptor is also a cell surface receptor, which undergoes highly complex itinerary between trans-Golgi network and the plasma membranes via clathrin-mediated transport carriers.
View Article and Find Full Text PDFKDEL receptor cycles between the ER and the Golgi to retrieve ER-resident chaperones that get leaked to the secretory pathway during protein export from the ER. Recent studies have shown that a fraction of KDEL receptor may reside in the plasma membrane and function as a putative cell surface receptor. However, the trafficking itinerary and mechanism of cell surface expressed KDEL receptor remains largely unknown.
View Article and Find Full Text PDFBiochem Biophys Res Commun
June 2020
Ebola virus is a member of Filoviridae family of viruses that causes fetal hemorrhagic fever in human. Matrix protein VP40 of the Ebola virus is involved in multiple stages of viral maturation processes. In order to fully understand the interacting partners of VP40 in host cells, we applied proximity-dependent biotin-identification (BioID) approach to systematically screen for potential proteins at different time points of VP40 expression.
View Article and Find Full Text PDFThe unique stacked morphology of the Golgi apparatus had been a topic of intense investigation among the cell biologists over the years. We had previously shown that the two Golgin tethers (GM130 and Golgin45) could, to a large degree, functionally substitute for GRASP-type Golgi stacking proteins to sustain normal Golgi morphology and function in GRASP65/55-double depleted HeLa cells. However, compared to well-studied GM130, the exact role of Golgin45 in Golgi structure remains poorly understood.
View Article and Find Full Text PDFAcyl-CoA-binding domain-containing 3 (ACBD3) is a multi-functional scaffolding protein, which has been associated with a diverse array of cellular functions, including steroidogenesis, embryogenesis, neurogenesis, Huntington's disease (HD), membrane trafficking, and viral/bacterial proliferation in infected host cells. In this review, we aim to give a timely overview of recent findings on this protein, including its emerging role in membrane domain organization at the Golgi and the mitochondria. We hope that this review provides readers with useful insights on how ACBD3 may contribute to membrane domain organization along the secretory pathway and on the cytoplasmic surface of intracellular organelles, which influence many important physiological and pathophysiological processes in mammalian cells.
View Article and Find Full Text PDFGolgin45 plays important roles in Golgi stack assembly and is known to bind both the Golgi stacking protein GRASP55 and Rab2 in the medial-Golgi cisternae. In this study, we sought to further characterize the cisternal adhesion complex using a proteomics approach. We report here that Acyl-CoA binding domain containing 3 (ACBD3) is likely to be a novel binding partner of Golgin45.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2014
Two classes of proteins that bind to each other and to Golgi membranes have been implicated in the adhesion of Golgi cisternae to each other to form their characteristic stacks: Golgi reassembly and stacking proteins 55 and 65 (GRASP55 and GRASP65) and Golgin of 45 kDa and Golgi matrix protein of 130 kDa. We report here that efficient stacking occurs in the absence of GRASP65/55 when either Golgin is overexpressed, as judged by quantitative electron microscopy. The Golgi stacks in these GRASP-deficient HeLa cells were normal both in morphology and in anterograde cargo transport.
View Article and Find Full Text PDFUDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase is an alpha(2)beta(2)gamma(2) hexamer that mediates the first step in the synthesis of the mannose 6-phosphate recognition marker on lysosomal acid hydrolases. Using a multifaceted approach, including analysis of acid hydrolase phosphorylation in mice and fibroblasts lacking the gamma subunit along with kinetic studies of recombinant alpha(2)beta(2)gamma(2) and alpha(2)beta(2) forms of the transferase, we have explored the function of the alpha/beta and gamma subunits. The findings demonstrate that the alpha/beta subunits recognize the protein determinant of acid hydrolases in addition to mediating the catalytic function of the transferase.
View Article and Find Full Text PDFChanges in the expression of N-glycan branching glycosyltransferases can alter cell surface receptor functions, involving their levels of cell surface retention, rates of internalization into the endosomal compartment, and subsequent intracellular signaling. To study in detail the regulation of signaling of the EGF receptor (EGFR) by GlcNAcbeta(1,6)Man branching, we utilized specific siRNA to selectively knockdown GnT-Va expression in the highly invasive human breast carcinoma line MDA-MB231, which resulted in the attenuation of its invasiveness-related phenotypes. Compared to control cells, ligand-induced downregulation of EGFR was significantly inhibited in GnT-Va-suppressed cells.
View Article and Find Full Text PDFPurpose: We evaluated the operative outcomes of laparoscopic surgery following self-expandable metallic stent compared to one-stage emergency surgical treatment.
Methods: From April 1996 to October 2007, 95 consecutive patients with left-sided malignant colorectal obstruction were enrolled. Twenty-five patients were assigned to the preoperative stenting and elective laparoscopic surgical treatment group (SLAP) and 70 to the emergency open surgery with intraoperative colon lavage group (OLAV).
Adaptor protein-1 (AP-1) is recruited onto the trans-Golgi network via binding to Arf-1.GTP, cargo-sorting signals and phosphoinositides, where it orchestrates the assembly of clathrin-coated vesicular carriers that transport cargo molecules to endosomes. Here we show that cytosolic AP-1 polymerizes when recruited onto enriched Golgi membranes and liposomes containing covalently attached cargo-sorting signal peptides.
View Article and Find Full Text PDFThe adaptor protein AP-1 is the major coat protein involved in the formation of clathrin-coated vesicles at the trans-Golgi network. The prevailing view is that AP-1 recruitment involves coincident binding to multiple low-affinity sites comprising adenosine diphosphate ribosylation factor 1 (Arf-1)-guanosine triphosphate (GTP), cargo sorting signals, and phosphoinositides. We now show that binding of cargo signal peptides to AP-1 induces a conformational change in its core domain that greatly enhances its interaction with Arf-1-GTP.
View Article and Find Full Text PDFThe clathrin adaptors AP-1 and AP-2 bind cargo proteins via two types of motifs: tyrosine-based Yxx phi and dileucine-based [DE]XXXL[LI]. Although it is well established that Yxx phi motifs bind to the mu subunits of AP-1 or AP-2, dileucine motifs have been reported to bind to either the mu or beta subunits of these adaptors as well as the gamma/sigma1 hemicomplex of AP-1. To clarify this controversy, the various subunits of AP-1 and AP-2 were expressed individually and in hemicomplex form in insect cells, and they were used in glutathione S-transferase pull-down assays to determine their binding properties.
View Article and Find Full Text PDFO-mannosyl-linked glycans constitute a third of all brain O-linked glycoproteins, and yet very little is understood about their functions. Several congenital muscular dystrophies with central nervous system defects are caused by genetic disruptions in glycosyltransferases responsible for the synthesis of O-mannosyl glycans. The glycosyltransferase GnT-Vb, also known as GnT-IX, is expressed abundantly in the brain and testis and is proposed to be the enzyme that branches O-mannosyl-linked glycans.
View Article and Find Full Text PDFN-acetylglucosaminyltransferase VB (GnT-VB, -IX) is a newly discovered glycosyltransferase expressed exclusively in high levels in neuronal tissue during early development. Its homolog, GnT-V, is expressed in many tissues and modulates cell-cell and cell-matrix adhesion. The ability of GnT-VB to regulate cell-matrix interactions was initially investigated using the rat pheochromocytoma PC12 neurite outgrowth model.
View Article and Find Full Text PDFAn N-linked glycan often increased during oncogenic transformation contains beta(1,6)-linked GlcNAc, synthesized by the N-acetylglucosaminyltransferase V (GnT-V). The progression of polyoma middle T-antigen oncoprotein-induced mammary carcinomas in GnT-V null mice was significantly retarded compared with that observed in wild-type mice. The matrix adhesion of mouse embryonic fibroblasts (MEF) from GnT-V null and wild-type mice was investigated to understand the mechanism by which deletion of GnT-V could retard tumor progression.
View Article and Find Full Text PDFVacuolar H(+)-ATPase functions as a vacuolar proton pump and is responsible for acidification of intracellular compartments such as the endoplasmic reticulum, Golgi, lysosomes, and endosomes. Previous reports have demonstrated that a 16-kDa subunit (16K) of vacuolar H(+)-ATPase via one of its transmembrane domains, TMD4, strongly associates with beta(1) integrin, affecting beta(1) integrin N-linked glycosylation and inhibiting its function as a matrix adhesion receptor. Because of this dramatic inhibition of beta(1) integrin-mediated HEK-293 cell motility by 16K expression, we investigated the mechanism by which 16 kDa was having this effect.
View Article and Find Full Text PDFUDP-N-acetylglucosamine:alpha(1,6)-D-mannoside beta(1,6)-N-acetylglucosaminyltransferase (GnT-V, Mgat5) functions in the biosynthesis of N-linked glycans and is transcriptionally upregulated by oncogene signaling. We report here the cloning and characterization of a human cDNA encoding a distinct enzyme with related substrate specificity, termed GnT-VB, which is predicted to have 53% similarity to the original amino acid sequence of GnT-V(A). Transient expression of GnT-VB cDNA in COS7 cells yielded significant increases of activity toward GnT-VA acceptors, including synthetic saccharides and N-linked glycopeptides, with some differences in specificity.
View Article and Find Full Text PDF