Publications by authors named "Insha Ahmad"

Recent technological advances have expanded the annotated protein coding content of mammalian genomes, as hundreds of previously unidentified, short open reading frame (ORF)-encoded peptides (SEPs) have now been found to be translated. Although several studies have identified important physiological roles for this emerging protein class, a general method to define their interactomes is lacking. Here, we demonstrate that genetic incorporation of the photo-crosslinking noncanonical amino acid AbK into SEP transgenes allows for the facile identification of SEP cellular interaction partners using affinity-based methods.

View Article and Find Full Text PDF

Peptide hormone relaxin-2, a member of the insulin family of peptides, plays a key role in hemodynamics and renal function and has shown preclinical efficacy in multiple disease models, including acute heart failure, fibrosis, preeclampsia, and corneal wound healing. Recently, serelaxin, a recombinant version of relaxin-2, has been studied in a large phase 3 clinical trial (RELAX-AHF-2) for acute decompensated heart failure patients with disappointing outcome. The poor in vivo half-life of relaxin-2 may have limited its therapeutic efficacy and long-term cardiovascular benefit.

View Article and Find Full Text PDF

Mechanisms that integrate the metabolic state of a cell with regulatory pathways are necessary to maintain cellular homeostasis. Endogenous, intrinsically reactive metabolites can form functional, covalent modifications on proteins without the aid of enzymes, and regulate cellular functions such as metabolism and transcription. An important 'sensor' protein that captures specific metabolic information and transforms it into an appropriate response is KEAP1, which contains reactive cysteine residues that collectively act as an electrophile sensor tuned to respond to reactive species resulting from endogenous and xenobiotic molecules.

View Article and Find Full Text PDF

Expression of the transcription factor FOXC2 is induced and necessary for successful epithelial-mesenchymal transition, a developmental program that when activated in cancer endows cells with metastatic potential and the properties of stem cells. As such, identifying agents that inhibit the growth of FOXC2-transformed cells represents an attractive approach to inhibit chemotherapy resistance and metastatic dissemination. From a high throughput synthetic lethal screen, we identified a small molecule, FiVe1, which selectively and irreversibly inhibits the growth of mesenchymally transformed breast cancer cells and soft tissue sarcomas of diverse histological subtypes.

View Article and Find Full Text PDF

Chimeric antigen receptor T (CAR-T) cells have demonstrated promising results against hematological malignancies, but have encountered significant challenges in translation to solid tumors. To overcome these hurdles, we have developed a switchable CAR-T cell platform in which the activity of the engineered cell is controlled by dosage of an antibody-based switch. Herein, we apply this approach to Her2-expressing breast cancers by engineering switch molecules through site-specific incorporation of FITC or grafting of a peptide neo-epitope (PNE) into the anti-Her2 antibody trastuzumab (clone 4D5).

View Article and Find Full Text PDF

Progressive phases of multiple sclerosis are associated with inhibited differentiation of the progenitor cell population that generates the mature oligodendrocytes required for remyelination and disease remission. To identify selective inducers of oligodendrocyte differentiation, we performed an image-based screen for myelin basic protein (MBP) expression using primary rat optic-nerve-derived progenitor cells. Here we show that among the most effective compounds identifed was benztropine, which significantly decreases clinical severity in the experimental autoimmune encephalomyelitis (EAE) model of relapsing-remitting multiple sclerosis when administered alone or in combination with approved immunosuppressive treatments for multiple sclerosis.

View Article and Find Full Text PDF
Article Synopsis
  • A phenotypic screen identified TCA1, a small molecule with bactericidal properties against both drug-susceptible and drug-resistant Mycobacterium tuberculosis (Mtb), effectively sterilizing it in vitro when combined with rifampicin or isoniazid.
  • TCA1 also shows effectiveness against nonreplicating Mtb and improves outcomes in mouse models of both acute and chronic Mtb infections, working alone and with other drugs.
  • Transcriptional analysis indicates that TCA1 affects genes related to Mtb persistence and targets specific enzymes (DprE1 and MoeW) crucial for Mtb’s survival, suggesting a distinct mechanism and the potential for new antituberculosis therapies.
View Article and Find Full Text PDF

Some species mount a robust antibody response despite having limited genome-encoded combinatorial diversity potential. Cows are unusual in having exceptionally long CDR H3 loops and few V regions, but the mechanism for creating diversity is not understood. Deep sequencing reveals that ultralong CDR H3s contain a remarkable complexity of cysteines, suggesting that disulfide-bonded minidomains may arise during repertoire development.

View Article and Find Full Text PDF

Somatic hypermutation and clonal selection lead to B cells expressing high-affinity antibodies. Here we show that somatic mutations not only play a critical role in antigen binding, they also affect the thermodynamic stability of the antibody molecule. Somatic mutations directly involved in antigen recognition by antibody 93F3, which binds a relatively small hapten, reduce the melting temperature compared with its germ-line precursor by up to 9 °C.

View Article and Find Full Text PDF

We report a bacterial system for the evolution of cyclic peptides that makes use of an expanded set of amino acid building blocks. Orthogonal aminoacyl-tRNA synthetase/tRNA(CUA) pairs, together with a split intein system were used to biosynthesize a library of ribosomal peptides containing amino acids with unique structures and reactivities. This peptide library was subsequently used to evolve an inhibitor of HIV protease using a selection based on cellular viability.

View Article and Find Full Text PDF

We have employed a rapid fluorescence-based screen to assess the polyspecificity of several aminoacyl-tRNA synthetases (aaRSs) against an array of unnatural amino acids. We discovered that a p-cyanophenylalanine specific aminoacyl-tRNA synthetase (pCNF-RS) has high substrate permissivity for unnatural amino acids, while maintaining its ability to discriminate against the 20 canonical amino acids. This orthogonal pCNF-RS, together with its cognate amber nonsense suppressor tRNA, is able to selectively incorporate 18 unnatural amino acids into proteins, including trifluoroketone-, alkynyl-, and halogen-substituted amino acids.

View Article and Find Full Text PDF

We report a new vector, pEVOL, for the incorporation of unnatural amino acids into proteins in Escherichia coli using evolved Methanocaldococcus jannaschii aminoacyl-tRNA synthetase(s) (aaRS)/suppressor tRNA pairs. This new system affords higher yields of mutant proteins through the use of both constitutive and inducible promoters to drive the transcription of two copies of the M. jannaschii aaRS gene.

View Article and Find Full Text PDF

To increase the utility of protein mutagenesis with unnatural amino acids, a recombinant expression system in the methylotrophic yeast Pichia pastoris was developed. Aminoacyl-tRNA synthetase/suppressor tRNA (aaRS/tRNA(CUA)) pairs previously evolved in Saccharomyces cerevisiae to be specific for unnatural amino acids were inserted between eukaryotic transcriptional control elements and stably incorporated into the P. pastoris genome.

View Article and Find Full Text PDF