We present a multi-dimensional continuum mathematical model for modeling the growth of a symbiotic biofilm system. We take a dual-species namely, the Streptococcus-Veillonella sp. biofilm system as an example for numerical investigations.
View Article and Find Full Text PDFFor decades, extensive research efforts have been conducted to improve the functionality and stability of implants. Especially in dentistry, implant treatment has become a standard medical practice. The treatment restores full dental functionality, helping patients to maintain high quality of life.
View Article and Find Full Text PDFWe study the macroscopic representation of noise-driven interfaces in stochastic interface growth models in (1+1) dimensions. The interface is characterized macroscopically by saturation, which represents the fluctuating sharp interface by a smoothly varying phase field with values between 0 and 1. We determine the one-point interface height statistics for the Edwards-Wilkinson (EW) and Kadar-Paris-Zhang (KPZ) models in order to determine explicit deterministic equations for the phase saturation for each of them.
View Article and Find Full Text PDFIn this paper we discuss estimates of effective parameters for an upscaled model for buoyant counter flow of DNAPL and water in a closed box filled with heterogeneous porous material. The upscaling procedure is based on the assumption that the flow is dominated by capillary forces on the small scale and that the fluids are segregated. The upscaled model has the same form as the usual two-phase flow model with an effective capillary pressure function and an effective mobility function Λ.
View Article and Find Full Text PDF