Publications by authors named "Insa Bonow"

Background: We assessed a commercial loop-mediated amplification (LAMP) platform for its reliability as a screening tool for malaria parasite detection.

Methods: A total of 1000 blood samples from patients with suspected or confirmed malaria submitted to the German National Reference Center for Tropical Pathogens were subjected to LAMP using the Meridian illumigene Malaria platform. Results were compared with microscopy from thick and thin blood films in all cases.

View Article and Find Full Text PDF

Background: The maturation of Plasmodium falciparum gametocytes in the human host takes several days, during which the parasites need to efficiently evade the host immune system. Like asexual stage parasites, immature gametocytes can sequester at various sites in the human body, and only mature sexual stages are found in the circulation. Although the fundamental mechanisms of gametocyte immune evasion are still largely unknown, candidate molecules that may be involved include variant antigens encoded by multigene families in the P.

View Article and Find Full Text PDF

Background: Plasmodium falciparum STEVOR proteins, encoded by the multicopy stevor gene family have no known biological functions. Their expression and unique locations in different parasite life cycle stages evoke multiple functionalities. Their abundance and hypervariability support a role in antigenic variation.

View Article and Find Full Text PDF

Tunga penetrans is an ectoparasite causing considerable morbidity in endemic communities. Recently, endobacteria of the genus Wolbachia were identified also in T. penetrans.

View Article and Find Full Text PDF

In search of Wolbachia in human parasites, Wolbachia were identified in the sand flea Tunga penetrans. PCR and DNA sequencing of the bacterial 16S rDNA, the ftsZ cell division protein, the Wolbachia surface protein (wsp) and the Wolbachia aspartate aminotransferase genes revealed a high similarity to the respective sequences of endosymbionts of filarial nematodes. Using these sequences a phylogenetic tree was generated, that indicates a close relationship between Wolbachia from T.

View Article and Find Full Text PDF

Wolbachia are intracellular alpha-proteobacteria, closely related to Rickettsia, that infect various arthropods and filarial parasites. In the present study, the cDNA encoding the aspartate aminotransferase (AspAT) of Wolbachia from the human pathogenic filarial parasite Onchocerca volvulus (Ov-WolAspAT) was identified. At the amino acid level, the identity of the Ov-WolAspAT was 56% to Rickettsia prowazekii AspAT and 54% to the AspAT of the nitrogen-fixing bacterium Sinorhizobium meliloti, but the highest degree of identity was found to the putative AspAT of Wolbachia from Brugia malayi and Drosophila melanogaster (85%).

View Article and Find Full Text PDF