Publications by authors named "Inrok Oh"

Long-term treatments for inflammatory skin diseases like atopic dermatitis or eczema can cause adverse effects. Super Protein Multifunction (SPM) was investigated as a potential treatment for managing skin inflammation by monitoring the expression of pro-inflammatory cytokines induced using LPS and poly(I:C)/TNFα in HaCaT keratinocytes and Hs27 fibroblasts as measured via RT-PCR. SPM solution was also assessed for its effect on cytokine release, measured using ELISA, in a UVB-irradiated 3D human skin model.

View Article and Find Full Text PDF

Evaluation of scar severity is crucial for determining proper treatment modalities; however, there is no gold standard for assessing scars. This study aimed to develop and evaluate an artificial intelligence model using images and clinical data to predict the severity of postoperative scars. Deep neural network models were trained and validated using images and clinical data from 1283 patients (main dataset: 1043; external dataset: 240) with post-thyroidectomy scars.

View Article and Find Full Text PDF

Brownian motion subject to a periodic and asymmetric potential can be biased by external, nonequilibrium fluctuations, leading to directional movement of Brownian particles. Sequence-dependent flexibility variation along double-stranded DNA has been proposed as a tool to develop periodic and asymmetric potentials for DNA binding of cationic nanoparticles with sizes below tens of nanometers. Here, we propose that repetitive stretching and relaxation of a long, double-stranded DNA molecule with periodic flexibility gradient can induce nonequilibrium fluctuations that tune the amplitude of asymmetric potentials for DNA-nanoparticle binding to result in directional transport of nanometer-sized particles along DNA.

View Article and Find Full Text PDF

Looping of double-stranded DNA molecules with 100-200 base pairs into minicircles, catenanes, and rotaxanes has been suggested as a potential tool for DNA nanotechnologies. However, sharp DNA bending into a minicircle with a diameter of several to ten nanometers occurs with alterations in the DNA helical structure and may lead to defective kink formation that hampers the use of DNA minicircles, catenanes, and rotaxanes in nanoscale DNA applications. Here, we investigated local variations of a helical twist in sharply bent DNA using microsecond-long all-atom molecular dynamics simulations of six different DNA minicircles, focusing on the sequence dependence of the coupling between DNA bending and its helical twist.

View Article and Find Full Text PDF

We present extensive molecular dynamics simulations of a cationic nanoparticle and a double-stranded DNA molecule to discuss the effect of DNA flexibility on the complex formation of a cationic nanoparticle with double-stranded DNA. Martini coarse-grained models were employed to describe double-stranded DNA molecules with two different flexibilities and cationic nanoparticles with three different electric charges. As the electric charge of a cationic nanoparticle increases, the degree of DNA bending increases, eventually leading to the wrapping of DNA around the nanoparticle at high electric charges.

View Article and Find Full Text PDF

Signaling between cancer cells, their neighboring cells, and mesenchymal stem cells (MSCs) forms the tumor microenvironment. The complex heterogeneity of this microenvironment varies depending on the tumor type and its origins. However, most of the existing cancer-based studies have focused on cancer cells.

View Article and Find Full Text PDF

Sharp increase in macromolecular crowding induces abnormal chromatin compaction in the cell nucleus, suggesting its non-negligible impact on chromatin structure and function. However, the details of the crowding-induced chromatin compaction remain poorly understood. In this work, we present a computer simulation study on the entropic effect of macromolecular crowding on the interaction between chromatin structural units called nucleosome clutches.

View Article and Find Full Text PDF

Phase separation in a biological cell nucleus occurs in a heterogeneous environment filled with a high density of chromatins and thus it is inevitably influenced by interactions with chromatins. As a model system of nuclear body formation in a cell nucleus filled with chromatins, we simulate the phase separation of a low-density Lennard-Jones (LJ) fluid interacting with a long, condensed polymer chain. The influence of the density variation of LJ particles above and below the phase boundary and the role of attractive interactions between LJ particles and polymer segments are investigated at a fixed value of strong self-interaction between LJ particles.

View Article and Find Full Text PDF

We investigate the influence of macromolecular crowding on interactions between collapsed polymers using computer simulations, to gain insights into biomacromolecular interactions in crowded biological environments. The effective attraction is induced between two collapsed polymers due to the macromolecular crowding, and it is found that the strength of the effective attraction decreases as the crowder size is reduced for a fixed crowder volume fraction, which is sharply contrasted with the conventional viewpoint based on the depletion attraction observed for hard-core spherical colloids. This unusual trend of size-dependence is interpreted by dividing the effective interaction into the polymer-mediated repulsion and crowder-mediated attraction.

View Article and Find Full Text PDF