Publications by authors named "Inosov D"

We present the magnetic properties of the chiral, polar, and possibly magnetoelectric antiperovskite β-FeSeO as derived from magnetization and specific-heat measurements as well as from powder neutron diffraction and Mössbauer experiments. Our macroscopic data unambiguously reveal two magnetic phase transitions at ≈ 103 K and ≈ 78 K, while Rietveld analysis of neutron powder diffraction data reveals a noncollinear antiferromagnetic structure featuring magnetic moments in the - plane of the trigonal structure and a ferromagnetic moment along . The latter is allowed by symmetry between and , weakly visible in the magnetization data yet unresolvable microscopically.

View Article and Find Full Text PDF

The noncentrosymmetric superconductor RuBhas in previous studies demonstrated remarkably unusual behaviour in its vortex lattice (VL), where the nearest neighbour directions of the vortices dissociate from the crystal lattice and instead show a complex field-history dependence, and the VL rotates as the field is changed. In this study, we look at the VL form factor of RuBduring this field-history dependence, to check for deviations from established models, such as the London model. We find that the data is well described by the anisotropic London model, which is in accordance with theoretical predictions that the alterations to the structure of the vortices due to broken inversion symmetry should be small.

View Article and Find Full Text PDF

The rare mineral cyanochroite, KCu(SO)·6HO, features isolated Cu ions in distorted octahedral coordination, linked via a hydrogen-bond network. We have grown single crystals of cyanochroite as large as ∼0.5 cm and investigated structural and magnetic aspects of this material.

View Article and Find Full Text PDF

Yb- and Ce-based delafossites were recently identified as effective spin-1/2 antiferromagnets on the triangular lattice. Several Yb-based systems, such as NaYbO, NaYbS, and NaYbSe, exhibit no long-range order down to the lowest measured temperatures and therefore serve as putative candidates for the realization of a quantum spin liquid. However, their isostructural Ce-based counterpart KCeSexhibits magnetic order below= 400 mK, which was so far identified only in thermodynamic measurements.

View Article and Find Full Text PDF

The design of new composite materials using extreme biomimetics is of crucial importance for bioinspired materials science. Further progress in research and application of these new materials is impossible without understanding the mechanisms of formation, as well as structural features at the molecular and nano-level. It presents a challenge to obtain a holistic understanding of the mechanisms underlying the interaction of organic and inorganic phases under conditions of harsh chemical reactions for biopolymers.

View Article and Find Full Text PDF

Magnetic Weyl semimetals are newly discovered quantum materials with the potential for use in spintronic applications. Of particular interest is the cubic Heusler compound CoMnGa due to its inherent magnetic and topological properties. This work presents the structural, magnetic and electronic properties of magnetron co-sputtered CoMnGa thin films, with thicknesses ranging from 10 to 80 nm.

View Article and Find Full Text PDF

Cerium hexaboride is a cubic f-electron heavy-fermion compound that displays a rich array of low-temperature magnetic ordering phenomena which have been the subject of investigation for more than 50 years. Its complex behaviour is the result of competing interactions, with both itinerant and local electrons playing important roles. Investigating this material has proven to be a substantial challenge, in particular because of the appearance of a 'magnetically hidden order' phase, which remained elusive to neutron-scattering investigations for many years.

View Article and Find Full Text PDF

Some heavy fermion materials show so-called hidden-order phases which are invisible to many characterization techniques and whose microscopic origin remained controversial for decades. Among such hidden-order compounds, CeB6 is of model character due to its simple electronic configuration and crystal structure. Apart from more conventional antiferromagnetism, it shows an elusive phase at low temperatures, which is commonly associated with multipolar order.

View Article and Find Full Text PDF

We performed small-angle neutron scattering (SANS) measurements on the helimagnetic spinel compound ZnCr2Se4. The ground state of this material is a multi-domain spin-spiral phase, which undergoes domain selection in a magnetic field and reportedly exhibits a transition to a proposed spin-nematic phase at higher fields. We observed a continuous change in the magnetic structure as a function of field and temperature, as well as a weak discontinuous jump in the spiral pitch across the domain-selection transition upon increasing field.

View Article and Find Full Text PDF

Complex low-temperature-ordered states in chiral magnets are typically governed by a competition between multiple magnetic interactions. The chiral-lattice multiferroic Cu2OSeO3 became the first insulating helimagnetic material in which a long-range order of topologically stable spin vortices known as skyrmions was established. Here we employ state-of-the-art inelastic neutron scattering to comprehend the full three-dimensional spin-excitation spectrum of Cu2OSeO3 over a broad range of energies.

View Article and Find Full Text PDF

We report a neutron scattering study of the magnetic order and dynamics of the bilayer perovskite Sr(3)Fe(2)O(7), which exhibits a temperature-driven metal-insulator transition at 340 K. We show that the Fe(4+) moments adopt incommensurate spiral order below T(N) = 115 K and provide a comprehensive description of the corresponding spin-wave excitations. The observed magnetic order and excitation spectra can be well understood in terms of an effective spin Hamiltonian with interactions ranging up to third-nearest-neighbor pairs.

View Article and Find Full Text PDF

Heavy-fermion metals exhibit a plethora of low-temperature ordering phenomena . Among these are the so-called hidden-order phases that, in contrast to conventional magnetic order, are invisible to standard neutron diffraction experiments. One of the structurally most simple hidden-order compounds, CeB6, has been intensively studied for an elusive phase that was attributed to the antiferroquadrupolar ordering of cerium-4f moments .

View Article and Find Full Text PDF

77Se and 87Rb nuclear magnetic resonance (NMR) experiments on Rb0.74Fe1.6Se2 reveal clearly distinct spectra originating from a majority antiferromagnetic (AF) and a minority metallic-superconducting (SC) phase.

View Article and Find Full Text PDF

Resonant magnetic excitations are recognised as hallmarks of unconventional superconductivity in copper oxides, iron pnictides and heavy-fermion compounds. Model calculations have related these modes to the microscopic properties of the pair wave function, but the mechanisms of their formation are still debated. Here we report the discovery of a similar resonant mode in the non-superconducting antiferromagnetic heavy-fermion metal CeB(6).

View Article and Find Full Text PDF

We have studied the low-energy spin-excitation spectrum of the single-crystalline Rb(2)Fe(4)Se(5) superconductor (T(c)=32 K) by means of inelastic neutron scattering. In the superconducting state, we observe a magnetic resonant mode centered at an energy of ℏω(res)=14 meV and at the (0.5 0.

View Article and Find Full Text PDF

Inelastic neutron scattering (INS) is employed to study damped spin-wave excitations in the noncentrosymmetric heavy-fermion superconductor CePt3Si along the antiferromagnetic Brillouin zone boundary in the low-temperature magnetically ordered state. Measurements along the (1/2 1/2 L) and (H H 1/2 - H) reciprocal-space directions reveal deviations in the spin-wave dispersion from the previously reported model. The broad asymmetric shape of the peaks in energy signifies strong spin-wave damping by interactions with the particle-hole continuum.

View Article and Find Full Text PDF

The single-layered half-doped manganite La(0.5)Sr(1.5)MnO₄ (LSMO), was studied by means of the angle-resolved photoemission spectroscopy (ARPES), scanning tunneling microscopy (STM), and resistivity measurements.

View Article and Find Full Text PDF

We report superconducting (SC) properties of stoichiometric LiFeAs (T(c)=17 K) studied by small-angle neutron scattering (SANS) and angle-resolved photoemission (ARPES). Although the vortex lattice exhibits no long-range order, well-defined SANS rocking curves indicate better ordering than in chemically doped 122 compounds. The London penetration depth lambda(ab)(0)=210+/-20 nm, determined from the magnetic field dependence of the form factor, is compared to that calculated from the ARPES band structure with no adjustable parameters.

View Article and Find Full Text PDF

We present a neutron-scattering study of the static and dynamic spin correlations in the underdoped high-temperature superconductor YBa2Cu3O6.45 in magnetic fields up to 15 T. The field strongly enhances static incommensurate magnetic order at low temperatures and induces a spectral-weight shift in the magnetic-excitation spectrum.

View Article and Find Full Text PDF

We investigate the magnetic penetration depth lambda in superconducting Ba1-xKxFe2As2 (Tc approximately 32 K) with muon-spin rotation (microSR) and angle-resolved photoemission (ARPES). Using microSR, we find the penetration-depth anisotropy gamma lambda=lambda c/lambda ab and the second-critical-field anisotropy gammaHc2 to show an opposite T evolution below Tc. This dichotomy resembles the situation in the two-gap superconductor MgB2.

View Article and Find Full Text PDF

We investigate the low energy electronic structure of Ba1-xKxFe2As2 (x=0; 0.3, T_{c}=32 K) single crystals by angle-resolved photoemission spectroscopy with a focus on the renormalization of the dispersion. A kink feature is detected at E approximately 25 meV for the doped compound which vanishes at T=200 K but stays virtually constant when T_{c} is crossed.

View Article and Find Full Text PDF

Using angle-resolved photoemission spectroscopy, we report on the direct observation of the energy gap in 2H-NbSe2 caused by the charge-density waves (CDW). The gap opens in the regions of the momentum space connected by the CDW vectors, which implies a nesting mechanism of CDW formation. In remarkable analogy with the pseudogap in cuprates, the detected energy gap also exists in the normal state (T>T0) where it breaks the Fermi surface into "arcs," it is nonmonotonic as a function of temperature with a local minimum at the CDW transition temperature (T0), and it forestalls the superconducting gap by excluding the nested portions of the Fermi surface from participating in superconductivity.

View Article and Find Full Text PDF

Here we present a combined study of the slightly underdoped novel pnictide superconductor Ba1-xKxFe2As2 by means of x-ray powder diffraction, neutron scattering, muon-spin rotation (microSR), and magnetic force microscopy (MFM). Static antiferromagnetic order sets in below T{m} approximately 70 K as inferred from the neutron scattering and zero-field-microSR data. Transverse-field microSR below Tc shows a coexistence of magnetically ordered and nonmagnetic states, which is also confirmed by MFM imaging.

View Article and Find Full Text PDF

Measurements of the low-energy electronic structure in Gd2PdSi3 and Tb2PdSi3 by means of angle-resolved photoelectron spectroscopy reveal a Fermi surface consisting of an electron barrel at the Gamma point surrounded by spindle-shaped electron pockets originating from the same band. The calculated momentum-dependent RKKY coupling strength is peaked at the 1/2GammaK wave vector, which coincides with the propagation vector of the low-temperature in-plane magnetic order observed by neutron diffraction, thereby demonstrating the decisive role of the Fermi surface geometry in explaining the complex magnetic ground state of ternary rare earth silicides.

View Article and Find Full Text PDF