India remained an epicenter for the snakebite-related mortality and morbidities due to widespread agricultural activities across the country and a considerable number of snakebites offended by Indian cobra (Naja naja), common krait (Bungarus caeruleus), Russell's viper (Daboia russelii), and saw-scaled viper (Echis carinatus). Presently, there is no selective test available for the detection of snake envenomation in India before the administration of snake antivenin. Therefore, the present study aimed to develop rapid, sensitive assay for the management of snakebite, which can detect venom, responsible snake species and serve as a tool for the reasonable administration of snake antivenin, which have scarcity across the world.
View Article and Find Full Text PDFSnakebite is a common, frequently devastating, occupational, socio-economic hazard, and it has a great impact on the rural population of India. Snakebite is a major cause of the human morbidity and mortality since ancient times, as it not only affects the victim by systemic envenomation but also by wound infections originating from deadly pathogenic microorganisms from the oral cavity of the offending snake. The pathogens from the oral cavity of the snake tend to initiate an infection, resulting in gas gangrene, soft tissue necrosis, and permanent physical disabilities.
View Article and Find Full Text PDFIn this study, we have developed a gold nanoparticle based simple, rapid lateral flow assay (LFA) for detection of Indian Cobra venom (CV) and Russell's viper venom (RV). Presently, there is no rapid, reliable, and field diagnostic test available in India, where snake bite cases are rampant. Therefore, this test has an immense potential from the public health point of view.
View Article and Find Full Text PDF