Mater Sci Eng C Mater Biol Appl
November 2019
Post-operative infection often occurs following orthopedic and dental implant placement requiring systemically administered antibiotics. However, this does not provide long-term protection. Over the last few decades, alternative methods involving slow drug delivery systems based on biodegradable poly-lactic acid and antibiotic loaded hydroxyapatite microspheres were developed to prevent post-operative infection.
View Article and Find Full Text PDFThe success of medical therapy depends on the correct amount and the appropriate delivery of the required drugs for treatment. By using biodegradable polymers a drug delivery over a time span of weeks or even months is made possible. This opens up a variety of strategies for better medication.
View Article and Find Full Text PDFMusculoskeletal disorders in the elderly have significantly increased due to the increase in an ageing population. The treatment of these diseases necessitates surgical procedures, including total joint replacements such as hip and knee joints. Over the years a number of treatment options have been specifically established which are either permanent or use temporary natural materials such as marine skeletons that possess unique architectural structure and chemical composition for the repair and regeneration of bone tissue.
View Article and Find Full Text PDFDuring the last two decades although many calcium phosphate based nanomaterials have been proposed for both drug delivery, and bone regeneration, their coating applications have been somehow slow due to the problems related to their complicated synthesis methods. In order to control the efficiency of local drug delivery of a biomaterial the critical pore sizes as well as good control of the chemical composition is pertinent. A variety of calcium phosphate based nanocoated composite drug delivery systems are currently being investigated.
View Article and Find Full Text PDFAn increase in clinical demand on the controlled release of bisphosphonates (BPs) due to complications associated with systemic administration, has been the current driving force on the development of BP drug-release systems. Bisphosphonates have the ability to bind to divalent metal ions, such as Ca , in bone mineral and prevent bone resorption by influencing the apoptosis of osteoclasts. Localized delivery using biodegradable materials, such as polylactic acid (PLA) and hydroxyapatite (HAp), which are ideal in this approach, have been used in this study to investigate the dissolution of clodronate (non-nitrogen-containing bisphosphonate) in a new release system.
View Article and Find Full Text PDFHydrothermally converted coralline hydroxyapatite (HAp) particles loaded with medically active substances were used to develop polylactic acid (PLA) thin film composites for slow drug delivery systems. The effects of HAp particles within PLA matrix on the gentamicin (GM) release and release kinetics were studied. The gentamicin release kinetics seemed to follow Power law Korsmeyer Peppas model with mainly diffusional process with a number of different drug transport mechanisms.
View Article and Find Full Text PDF