Computer-aided drug discovery and development approaches such as virtual screening, molecular docking, and in silico drug property calculations have been utilized in this effort to discover new lead compounds against tuberculosis. The enzyme 7,8-diaminopelargonic acid aminotransferase (BioA) in (), primarily involved in the lipid biosynthesis pathway, was chosen as the drug target due to the fact that humans are not capable of synthesizing biotin endogenously. The computational screening of 4.
View Article and Find Full Text PDFThe title copper(II) complex of a pyridine-containing macrocycle (PyMAC), [Cu(C16H28N4)](ClO4)2, has been prepared. The crystal structure reveals the Cu(II) atom to be octahedrally coordinated by a tetradentate aminopyridine macrocyclic ligand surrounding the metal cation in a square-planar geometry. Two weakly bound perchlorate counter-ions occupy the axial sites above and below the macrocyclic plane.
View Article and Find Full Text PDFMycobacterium tuberculosis (Mtb) the main causative agent of tuberculosis, is the main reason why this disease continues to be a global public health threat. It is therefore imperative to find a novel antitubercular drug target that is unique to the structural machinery or is essential to the growth and survival of the bacterium. One such target is the enzyme l,d-transpeptidase 2, also known as LdtMt2, a protein primarily responsible for the catalysis of 3→3 cross-linkages that make up the mycolyl-arabinogalactan-peptidoglycan complex of Mtb.
View Article and Find Full Text PDF