Publications by authors named "Inna V Melnyk"

Spherical particles with tunable anisotropic structures enabled by multiple surface functionalities have garnered interest for their potential applications in adsorption technologies. The presence of diverse functional groups in the surface layer, exhibiting varying acidity and hydrophilicity, can lead to unique characteristics in terms of surface structure and behaviour. In this study, the particles were synthesised using a two-step approach involving surface functionalisation of previously synthesised SiO Stöber particles.

View Article and Find Full Text PDF

Production of environmentally friendly multitasking materials is among the urgent challenges of chemistry and ecotechnology. The current research paper describes the synthesis of amino-/silica and amino-/phenyl-/silica particles using a one-pot sol-gel technique. CHNS analysis and titration demonstrated a high content of functional groups, while scanning electron microscopy revealed their spherical form and ∼200 nm in size.

View Article and Find Full Text PDF

The magnetite nanoparticles were functionalized with silica shells bearing mercaptopropyl (monofunctional) and mercaptopropyl-and-alkyl groups (bifunctional) by single-step sol-gel technique. The influence of synthetic conditions leading to increased amounts of active functional groups on the surface and improved capacity in the uptake of Ag(I), Cd(II), Hg(II), and Pb(II) cations was revealed. The physicochemical properties of obtained magnetic nanocomposites were investigated by FTIR, Raman, XRD, TEM, SEM, low-temperature nitrogen ad-/desorption measurements, TGA, and chemical microanalysis highlighting the efficiency of functionalization and mechanisms of the preparation procedures.

View Article and Find Full Text PDF

Sol-gel technology is a versatile tool for preparation of complex silica-based materials with targeting functions for use as adsorbents in water purification. Most efficient removal of organic pollutants is achieved by using enzymatic reagents grafted on nano-carriers. However, enzymes are easily deactivated in the presence of heavy metal cations.

View Article and Find Full Text PDF

Spherical silica particles with bifunctional (≡Si(CH)NH/≡SiCH, ≡Si(CH)NH/≡Si(CH)(CF)CF) surface layers were produced by a one-step approach using a modified Stöber method in three-component alkoxysilane systems, resulting in greatly increased contents of functional components. The content of functional groups and thermal stability of the surface layers were analyzed by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, and C and Si solid-state NMR spectroscopy revealing their composition and organization. The fine chemical structure of the surface in the produced hybrid adsorbent particles and the ligand distribution were further investigated by electron paramagnetic resonance (EPR) and electron spectroscopy of diffuse reflectance (ESDR) spectroscopy using Cu ion coordination as a probe.

View Article and Find Full Text PDF

In order to obtain amino-functionalized silica materials with magnetic core, one-step synthesis was carried out. Several materials, differ in number and structure of amino groups, were synthesized on the basis of sol-gel method. The synthesized materials were examined by several analytical techniques.

View Article and Find Full Text PDF

One-step synthesis technique of mesoporous SBA-15 type silica with thiourea ≡Si(CH(2))(3)NHC(S)NHC(2)H(5) groups in the surface layer was developed. According to elemental analysis, the content of surface groups is 1.25 mmol/g, which is consistent with TGA data.

View Article and Find Full Text PDF