SNAP-25 (synaptosomal-associated protein of 25 kDa) is a prototypical intrinsically disordered protein (IDP) that is unstructured by itself but forms coiled-coil helices in the SNARE complex. With high conformational heterogeneity, detailed structural dynamics of unbound SNAP-25 remain elusive. Here, we report an integrative method to probe the structural dynamics of SNAP-25 by combining replica-exchange discrete molecular dynamics (rxDMD) simulations and label-based experiments at ensemble and single-molecule levels.
View Article and Find Full Text PDFThis paper was originally published under standard Springer Nature copyright. As of the date of this correction, the Analysis is available online as an open-access paper with a CC-BY license. No other part of the paper has been changed.
View Article and Find Full Text PDFPrevious studies of the N-terminal PDZ tandem from PSD-95 produced divergent models and failed to identify interdomain contacts stabilizing the structure. We used ensemble and single-molecule FRET along with replica-exchange molecular dynamics to fully characterize the energy landscape. Simulations and experiments identified two conformations: an open-like conformation with a small contact interface stabilized by salt bridges, and a closed-like conformation with a larger contact interface stabilized by surface-exposed hydrophobic residues.
View Article and Find Full Text PDFSingle-molecule Förster resonance energy transfer (smFRET) is increasingly being used to determine distances, structures, and dynamics of biomolecules in vitro and in vivo. However, generalized protocols and FRET standards to ensure the reproducibility and accuracy of measurements of FRET efficiencies are currently lacking. Here we report the results of a comparative blind study in which 20 labs determined the FRET efficiencies (E) of several dye-labeled DNA duplexes.
View Article and Find Full Text PDFA protocol on how to perform high-precision interdye distance measurements using Förster resonance energy transfer (FRET) at the single-molecule level in multiparameter fluorescence detection (MFD) mode is presented here. MFD maximizes the usage of all "dimensions" of fluorescence to reduce photophysical and experimental artifacts and allows for the measurement of interdye distance with an accuracy up to ~1 Å in rigid biomolecules. This method was used to identify three conformational states of the ligand-binding domain of the N-methyl-D-aspartate (NMDA) receptor to explain the activation of the receptor upon ligand binding.
View Article and Find Full Text PDF