When natural photoreception is disrupted, as in outer-retinal degenerative diseases, artificial stimulation of surviving nerve cells offers a potential strategy for bypassing compromised neural circuits. Recently, light-sensitive proteins that photosensitize quiescent neurons have generated unprecedented opportunities for optogenetic neuronal control, inspiring early development of optical retinal prostheses. Selectively exciting large neural populations are essential for eliciting meaningful perceptions in the brain.
View Article and Find Full Text PDFTransl Vis Sci Technol
September 2012
Purpose: To acquire and characterize cellular-resolved in vivo fluorescence images of optogenetic probes expressed in rodent retinal ganglion cells, by adapting a low-cost and simple fundus system based on a topical endoscope.
Methods: A custom endoscope-based fundus system was constructed (adapted from the design of Paques and colleagues). Bright field and fluorescence images were acquired from head-fixed transgenic mice expressing Channelrhodopsin2-eYFP, and Sprague Dawley rats virally transfected with the optogenetic probe GCaMP3.