Publications by authors named "Inna Biryukova"

We present a major update of MirGeneDB (3.0), the manually curated animal microRNA gene database. Beyond moving to a new server and the creation of a computational mirror, we have expanded the database with the addition of 33 invertebrate species, including representatives of 5 previously unsampled phyla, and 6 mammal species.

View Article and Find Full Text PDF

Malat1 is a long-noncoding RNA with critical roles in gene regulation and cancer metastasis, however its functional role in stem cells is largely unexplored. We here perform a nuclear knockdown of Malat1 in mouse embryonic stem cells, causing the de-regulation of 320 genes and aberrant splicing of 90 transcripts, some of which potentially affecting the translated protein sequence. We find evidence that Malat1 directly interacts with gene bodies and aberrantly spliced transcripts, and that it locates upstream of down-regulated genes at their putative enhancer regions, in agreement with functional genomics data.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are important and ubiquitous regulators of gene expression in both plants and animals. They are thought to have evolved convergently in these lineages and hypothesized to have played a role in the evolution of multicellularity. In line with this hypothesis, miRNAs have so far only been described in few unicellular eukaryotes.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) exert their gene regulatory effects on numerous biological processes based on their selection of target transcripts. Current experimental methods available to identify miRNA targets are laborious and require millions of cells. Here we have overcome these limitations by fusing the miRNA effector protein Argonaute2 to the RNA editing domain of ADAR2, allowing the detection of miRNA targets transcriptome-wide in single cells.

View Article and Find Full Text PDF

Paleogenomics continues to yield valuable insights into the evolution, population dynamics, and ecology of our ancestors and other extinct species. However, DNA sequencing cannot reveal tissue-specific gene expression, cellular identity, or gene regulation, which are only attainable at the transcriptional level. Pioneering studies have shown that useful RNA can be extracted from ancient specimens preserved in permafrost and historical skins from extant canids, but no attempts have been made so far on extinct species.

View Article and Find Full Text PDF

Malaria inflicts the highest rate of morbidity and mortality among the vector-borne diseases. The dramatic bottleneck of parasite numbers that occurs in the gut of the obligatory mosquito vector provides a promising target for novel control strategies. Using single-cell transcriptomics, we analyzed Plasmodium falciparum development in the mosquito gut, from unfertilized female gametes through the first 20 h after blood feeding, including the zygote and ookinete stages.

View Article and Find Full Text PDF

miRNAs are short noncoding RNA molecules that regulate gene expression by inhibiting translation or inducing degradation of target mRNAs. miRNAs are often expressed as polycistronic transcripts, so-called miRNA clusters, containing several miRNA precursors. The largest mammalian miRNA cluster, the miR-379-410 cluster, is expressed primarily during embryonic development and in the adult brain; however, downstream regulation of this cluster is not well understood.

View Article and Find Full Text PDF

Previous large-scale studies have uncovered many features that determine the processing of microRNA (miRNA) precursors; however, they have been conducted in vitro. Here, we introduce MapToCleave, a method to simultaneously profile processing of thousands of distinct RNA structures in living cells. We find that miRNA precursors with a stable lower basal stem are more efficiently processed and also have higher expression in vivo in tissues from 20 animal species.

View Article and Find Full Text PDF

Single-cell RNA sequencing studies on gene co-expression patterns could yield important regulatory and functional insights, but have so far been limited by the confounding effects of differentiation and cell cycle. We apply a tailored experimental design that eliminates these confounders, and report thousands of intrinsically covarying gene pairs in mouse embryonic stem cells. These covariations form a network with biological properties, outlining known and novel gene interactions.

View Article and Find Full Text PDF

Accumulating behavioural data indicate that aggregation pheromones may mediate the formation and maintenance of mosquito swarms. However, chemical cues possibly luring mosquitoes to swarms have not been adequately investigated, and the likely molecular incitants of these complex reproductive behaviours remain unknown. Here we show that males of the important malaria vector species Anopheles arabiensis and An.

View Article and Find Full Text PDF

We present here miRTrace, the first algorithm to trace microRNA sequencing data back to their taxonomic origins. This is a challenge with profound implications for forensics, parasitology, food control, and research settings where cross-contamination can compromise results. miRTrace accurately (> 99%) assigns real and simulated data to 14 important animal and plant groups, sensitively detects parasitic infection in mammals, and discovers the primate origin of single cells.

View Article and Find Full Text PDF

Background: The siRNA and piRNA pathways have been shown in insects to be essential for regulation of gene expression and defence against exogenous and endogenous genetic elements (viruses and transposable elements). The vast majority of endogenous small RNAs produced by the siRNA and piRNA pathways originate from repetitive or transposable elements (TE). In D.

View Article and Find Full Text PDF

Background: microRNAs (miRNAs) are a highly abundant class of small noncoding regulatory RNAs that post-transcriptionally regulate gene expression in multicellular organisms. miRNAs are involved in a wide range of biological and physiological processes, including the regulation of host immune responses to microbial infections. Small-scale studies of miRNA expression in the malaria mosquito Anopheles gambiae have been reported, however no comprehensive analysis of miRNAs has been performed so far.

View Article and Find Full Text PDF

MicroRNAs are short non-coding endogenous RNAs that are implicated in regulating various aspects of plants and animal development, however their functions in organogenesis are largely unknown. Here we report that mir-9a belonging to the mir-9 family, regulates Drosophila wing development through a functional target site in the 3' untranslated region of the Drosophila LIM only protein, dLMO. dLMO is a transcription cofactor, that directly inhibits the activity of Apterous, the LIM-HD factor required for the proper dorsal identity of the wings.

View Article and Find Full Text PDF

The peripheral nervous system is required for animals to detect and to relay environmental stimuli to central nervous system for the information processing. In Drosophila, the precise spatial and temporal expression of two proneural genes achaete (ac) and scute (sc), is necessary for development of the sensory organs. Here we present an evidence that the transcription co-repressor, dCtBP acts as a negative regulator of sensory organ prepattern.

View Article and Find Full Text PDF

The Drosophila bHLH proneural factors Achaete (Ac) and Scute (Sc) are expressed in clusters of cells (proneural clusters), providing the cells with the potential to develop a neural fate. Mediodorsal proneural patterning is mediated through the GATA transcription factor Pannier (Pnr) that activates ac/sc directly through binding to the dorsocentral (DC) enhancer of ac/sc. Besides, the Gfi transcription factor Senseless (Sens), a target of Ac/Sc, synergizes with ac/sc in the presumptive sensory organ precursors (SOPs).

View Article and Find Full Text PDF

In Drosophila melanogaster, broken chromosome ends behave as real telomeres and are believed to be covered with telomere-specific chromatin. It has been shown previously that the telomeric chromatin represses normal activity of enhancers that regulate yellow expression in wings and body cuticle. In this paper, we have found that a modified yellow promoter is fully active in the wing and body cuticle when it is located at the chromosome end, which is evidence that the telomeric chromatin does not repress transcription.

View Article and Find Full Text PDF

Previously we described highly unstable mutations in the yellow locus, induced by the chimeric element and consisting of sequences from a distally located 1A unique genomic region, flanked by identical copies of an internally deleted 1.2-kb P element. Here we show that a sequence, which is part of the yellow 1A region, can be transmitted to the AS-C by successive inversion and reinversion generated by yellow- and AS-C-located P elements.

View Article and Find Full Text PDF

The pattern of the external sensory organs (SO) in Drosophila depends on the activity of the basic helix-loop-helix (bHLH) transcriptional activators Achaete/Scute (Ac/Sc) that are expressed in clusters of cells (pro-neural clusters) and provide the cells with the potential to develop a neural fate. In the mesothorax, the GATA1 transcription factor Pannier (Pnr), together with its cofactor Chip, activates ac/sc genes directly through binding to the dorso-central enhancer (DC) of ac/sc. We identify the LIM-homeo domain (LIM-HD) transcription factor Islet (Isl) by genetic screening and investigate its role in the thoracic pre-patterning.

View Article and Find Full Text PDF

The best characterized chromatin insulator in Drosophila is the Suppressor of Hairy wing binding region contained within the gypsy retrotransposon. Although cellular functions have been suggested, no role has been found yet for the multitude of endogenous Suppressor of Hairy wing binding sites. Here we show that two Suppressor of Hairy wing binding sites in the intergenic region between the yellow gene and the Achaete-scute gene complex form a functional insulator.

View Article and Find Full Text PDF

The GATA factor Pannier activates proneural achaete/scute (ac/sc) expression during development of the sensory organs of Drosophila through enhancer binding. Chip bridges Pannier with the (Ac/Sc)-Daughterless heterodimers bound to the promoter and facilitates the enhancer-promoter communication required for proneural development. We show here that this communication is regulated by Osa, which is recruited by Pannier and Chip.

View Article and Find Full Text PDF