Among land vertebrates, the laying hen stands out due to its great reproductive efficiency: producing an egg daily all year long. This production rate makes the laying hen a special model animal to study the general process of reproduction and aging. One unique aspect of hens is their ability to undergo reproductive plasticity and to rejuvenate their reproductive tract during molting, a standard industrial feed restriction protocol for transiently pausing reproduction, followed by improved laying efficiency almost to peak production.
View Article and Find Full Text PDFCytokines are secreted immunomodulators that are key regulators of the avian immune response. Currently, the most commonly used method to follow cytokine expression is qPCR, which measures cellular levels of mRNA, rather their extracellular circulating levels. Here we present a commercially available cytokine array designed to assay circulating expression levels of multiple cytokines and immunomodulators simultaneously.
View Article and Find Full Text PDFJ Gerontol A Biol Sci Med Sci
September 2021
Aging in vertebrates is an extremely complex process that is still poorly understood. One confining factor to studying vertebrate aging is the lack of appropriate models. The laying hen is a good model to study vertebrate aging, as it can be maintained under standard housing conditions, its breeds are genetically well defined and it exhibits significant aging phenotypes at around 18 months of age.
View Article and Find Full Text PDFBackground: Parkinson's disease (PD) is a movement neurodegenerative disorder characterized by death of dopaminergic neurons in the substantia nigra pars compacta of the brain that leads to movement impairments including bradykinesia, resting tremor, postural instability and rigidity. Mutations in several genes have been associated with familial PD, such as parkin, pink, DJ-1, LRKK2 and α-synuclein. Lately, mutations in the GBA gene were recognized as a major cause for the development of PD.
View Article and Find Full Text PDFBlood Cells Mol Dis
February 2013
Gaucher disease (GD) is characterized by accumulation of glucosylceramide in lysosomes due to mutations in the GBA1 gene encoding the lysosomal hydrolase β-glucocerebrosidase (GCase). The disease has a broad spectrum of phenotypes, which were divided into three different Types; Type 1 GD is not associated with primary neurological disease while Types 2 and 3 are associated with central nervous system disease. GCase molecules are synthesized on endoplasmic reticulum (ER)-bound polyribosomes, translocated into the ER and following modifications and correct folding, shuttle to the lysosomes.
View Article and Find Full Text PDFMutations in the GBA gene, encoding the lysosomal acid beta-glucocerebrosidase (GCase), lead to deficient activity of the enzyme in the lysosomes, to glucosylceramide accumulation and to development of Gaucher disease (GD). More than 280 mutations in the GBA gene have been directly associated with GD. Mutant GCase variants present variable levels of endoplasmic reticulum (ER) retention, due to their inability to correctly fold, and undergo ER-associated degradation (ERAD) in the proteasomes.
View Article and Find Full Text PDFBlood Cells Mol Dis
January 2011
A large number of mutations in the glucocerebrosidase gene (GBA gene), encoding the lysosomal acid hydrolase glucocerebrosidase (GCase), lead to Gaucher disease (GD). The second most prevalent GD causing mutation, carried by 38% of non-Jewish patients, is L444P, resulting from a T to C transition in nucleotide 6092 of the GBA gene. It is a severe mutation that, in homozygosity, leads to neuropathic type 3 GD.
View Article and Find Full Text PDF