Background And Purpose: Radiation-induced myelopathy, an irreversible complication occurring after a long symptom-free latency time, is preceded by a fixed sequence of magnetic resonance- (MR-) visible morphological alterations. Vascular degradation is assumed the main reason for radiation-induced myelopathy. We used dynamic contrast-enhanced (DCE-) MRI to identify different vascular changes after photon and carbon ion irradiation, which precede or coincide with morphological changes.
View Article and Find Full Text PDFBackground: Radiation-induced myelopathy is a severe and irreversible complication that occurs after a long symptom-free latency time if the spinal cord was exposed to a significant irradiation dose during tumor treatment. As carbon ions are increasingly investigated for tumor treatment in clinical trials, their effect on normal tissue needs further investigation to assure safety of patient treatments. Magnetic resonance imaging (MRI)-visible morphological alterations could serve as predictive markers for medicinal interventions to avoid severe side effects.
View Article and Find Full Text PDFRecent in vitro studies have suggested a role for sialylation in chemokine receptor binding to its ligand (Bannert, N., S. Craig, M.
View Article and Find Full Text PDFL-selectin belongs to the C-type lectin family of glycoproteins and is constitutively expressed on most leukocytes. L-selectin mediates leukocyte rolling in inflamed microvessels and high endothelial venules (HEV) via binding to specific carbohydrate structures on selectin ligands. Previous studies using sialidase treatment suggested a role of sialic acid residues in L-selectin-dependent rolling.
View Article and Find Full Text PDF