The growing interest in the development of cost-effective, straightforward, and rapid analytical systems has found cellulose-based materials, including cellulose derivatives, cellulose-based gels, nanocellulosic materials, and the corresponding (nano)cellulose-based composites, to be valuable platforms for sensor development. The present work presents recent advances in the development of cellulose-based sensors for the determination of volatile analytes and derivatives of analytical relevance. In particular, strategies described in the literature for the fabrication and modification of cellulose-based substrates with responsive materials are summarized.
View Article and Find Full Text PDFLab-on-paper technologies, also known as paper-based analytical devices (PADs), have received increasing attention in the last years, and nowadays, their use has spread to virtually every application area, i.e., medical diagnostic, food safety, environmental monitoring, etc.
View Article and Find Full Text PDFThe development of disposable sensors that can be easily adapted to every analytical problem is currently a hot topic that is revolutionizing many areas of science and technology. The need for decentralized analytical measurements at real time is increasing for solving problems in areas such as environment pollution, medical diagnostic, food quality assurance, etc., requiring fast action.
View Article and Find Full Text PDFUltrasound-assisted co-precipitation was applied to construct a magnetic nanocomposite following a 'one-pot' synthetic strategy for Hg(II) enrichment. The presence of a noble metal such as Ag(I), Au(III), Pd(II) in the synthesis medium proved to be essential in order to attain an efficient co-precipitation of Hg with the magnetic nanoparticles. Following this preconcentration procedure, thermal desorption and a further preconcentration was carried out by amalgamation onto a gold coil placed inside a direct mercury analyzer working under the principle of atomic absorption.
View Article and Find Full Text PDFA variety of food and drink samples (n = 21) were analyzed to evaluate the presence of (nano-) particles in their composition. After assessment of the sample pre-treatment step, a fast screening analysis was performed for drinks by Dynamic Light Scattering showing particles from 10 to 300 nm that could correspond to organic or metallic NPs. Metallic NPs were identified in foods by Single-Particle mode Inductively Coupled Plasma Mass Spectrometry and Asymmetrical Flow Field-Flow Fractionation coupled to Multiangle Laser Light Scattering and Inductively-Coupled Plasma Mass Spectrometry.
View Article and Find Full Text PDFCosmetics are part of the daily life of most of the people. Thus, a complete characterization of the products we applied in our skin is necessary. In this work, an analytical investigation of a wide variety of cosmetics from the point of view of total element content and metallic nanoparticles (NPs) has been performed.
View Article and Find Full Text PDFAn overview of the combination of liquid-phase microextraction (LPME) techniques with graphite furnace atomic absorption spectrometry (GFAAS) is reported herein. The high sensitivity of GFAAS is significantly enhanced by its association with a variety of miniaturized solvent extraction approaches. LPME-GFAAS thus represents a powerful combination for determination of metals, metalloids and organometallic compounds at (ultra)trace level.
View Article and Find Full Text PDFA method has been developed for the specific and sensitive determination of Cr(VI) in foods. First, the interactions between Cr(VI) and the matrices were investigated by size-exclusion HPLC-ICP-MS (SEC-ICP-MS). Evidence was found for the complexation of Cr(VI) potentially present with the ligands.
View Article and Find Full Text PDFFast and reliable analytical methodologies are required for quality control of plants in order to assure human health. Ultrasound-assisted extraction in combination with total reflection X-ray fluorescence is proposed as a fast and simple method for multielemental analysis of plants on a routine basis. For this purpose, five certified reference materials have been analysed for the determination of P, K, Ca, Cr, Mn, Fe, Ni, Cu, Zn and Pb.
View Article and Find Full Text PDFA green assay based on the development of an enzymatic reaction in drop format under headspace single-drop microextraction conditions is described for the first time. An aqueous drop containing the enzyme alcohol dehydrogenase and the cofactor β-Nicotinamide adenine dinucleotide has been used as fluorescence probe for determining ethanol in alcohol-free cosmetics by microvolume fluorospectrometry. Experimental parameters affecting the microextraction performance were carefully optimized.
View Article and Find Full Text PDFA headspace single drop microextraction procedure is proposed for terpene screening in fragrance-free cosmetics. The drop is composed by an aqueous solution of a fluorescence probe formed by bovine serum albumin and fluorescein. Extracted volatile terpenes produce a fluorescence quenching that can be monitored by microvolume-fluorospectrometry.
View Article and Find Full Text PDFA miniaturized methodology for the determination of phosphate in waters has been developed by combining directly suspended droplet microextraction (DSDME) with microvolume spectrophotometry. The method is based on the extraction of the ion pair formed between 12-molybdophosphate and malachite green onto a microdrop of methyl isobutyl ketone and subsequent spectrophotometric determination with no dilution. An enrichment factor of 325 was obtained after 7.
View Article and Find Full Text PDFIn this work, ultrasound-assisted emulsification microextraction in combination with fibre optics-based cuvetteless UV-vis micro-spectrophotometry has been proposed as a novel method for the determination of formaldehyde in water-based cosmetics such as shampoo, conditioner and shower gel. The use of a powerful cup-horn sonoreactor allows simultaneous extraction and derivatization of the samples without any pre-treatment. The type and volume of organic extractant solvent, need for a disperser solvent, sonication conditions (sonication time and amplitude), ionic strength and centrifuging time have been carefully studied.
View Article and Find Full Text PDF