Psyllium is a widely used treatment for constipation. It traps water in the intestine increasing stool water, easing defaecation and altering the colonic environment. We aimed to assess the impact of psyllium on faecal microbiota, whose key role in gut physiology is being increasingly recognised.
View Article and Find Full Text PDFIrritable bowel syndrome (IBS) patients suffer from chronic abdominal pain and extraintestinal comorbidities, including overactive bladder (OAB) and interstitial cystitis/painful bladder syndrome (IC-PBS). Mechanistic understanding of the cause and time course of these comorbid symptoms is lacking, as are clinical treatments. Here, we report that colitis triggers hypersensitivity of colonic afferents, neuroplasticity of spinal cord circuits, and chronic abdominal pain, which persists after inflammation.
View Article and Find Full Text PDFCystic fibrosis (CF) is a genetic disorder in which epithelium-generated fluid flow from the lung, intestine, and pancreas is impaired due to mutations disrupting CF transmembrane conductance regulator (CFTR) channel function. CF manifestations of the pancreas and lung are present in the vast majority of CF patients, and 15% of CF infants are born with obstructed gut or meconium ileus. However, constipation is a significantly underreported outcome of CF disease, affecting 47% of the CF patients, and management becomes critical in the wake of increasing life span of CF patients.
View Article and Find Full Text PDFThe transmembrane receptor guanylyl cyclase-C (GC-C), expressed on enterocytes along the intestine, is the molecular target of the GC-C agonist peptide linaclotide, an FDA-approved drug for treatment of adult patients with Irritable Bowel Syndrome with Constipation and Chronic Idiopathic Constipation. Polarized human colonic intestinal cells (T84, CaCo-2BBe) rat and human intestinal tissues were employed to examine cellular signaling and cystic fibrosis transmembrane conductance regulator (CFTR)-trafficking pathways activated by linaclotide using confocal microscopy, in vivo surface biotinylation, and protein kinase-II (PKG-II) activity assays. Expression and activity of GC-C/cGMP pathway components were determined by PCR, western blot, and cGMP assays.
View Article and Find Full Text PDFMRP4 mediates the efflux of cGMP and cAMP and acts as an important regulator of these secondary messengers, thereby affecting signaling events mediated by cGMP and cAMP. Immunofluorescence staining showed high MRP4 expression localized predominantly in the apical membrane of rat colonic epithelium. In vitro studies were performed using a rat colonic mucosal layer mounted in an Ussing chamber.
View Article and Find Full Text PDFActivation of guanylate cyclase-C (GC-C) expressed predominantly on intestinal epithelial cells by guanylin, uroguanylin or the closely related GC-C agonist peptide, linaclotide, stimulates generation, and release of cyclic guanosine-3',5'-monophosphate (cGMP). Evidence that the visceral analgesic effects of linaclotide are mediated by a novel, GC-C-dependent peripheral sensory mechanism was first demonstrated in animal models of visceral pain. Subsequent studies with uroguanylin or linaclotide have confirmed the activation of a GC-C/cGMP pathway leading to increased submucosal cGMP mediated by cGMP efflux pumps, which modulates intestinal nociceptor function resulting in peripheral analgesia.
View Article and Find Full Text PDFBackground & Aims: Linaclotide is a minimally absorbed agonist of guanylate cyclase-C (GUCY2C or GC-C) that reduces symptoms associated with irritable bowel syndrome with constipation (IBS-C). Little is known about the mechanism by which linaclotide reduces abdominal pain in patients with IBS-C.
Methods: We determined the effects of linaclotide on colonic sensory afferents in healthy mice and those with chronic visceral hypersensitivity.
The natural hormone uroguanylin regulates intestinal fluid homeostasis and bowel function through activation of guanylate cyclase-C (GC-C), resulting in increased intracellular cyclic guanosine-3',5'-monophosphate (cGMP). We report the effects of uroguanylin-mediated activation of the GC-C/cGMP pathway in vitro on extracellular cGMP transport and in vivo in rat models of inflammation- and stress-induced visceral hypersensitivity. In vitro exposure of intestinal Caco-2 cells to uroguanylin stimulated bidirectional, active extracellular transport of cGMP into luminal and basolateral spaces.
View Article and Find Full Text PDFIrritable bowel syndrome (IBS) is characterized by altered bowel habits, persistent pain and discomfort, and typically colorectal hypersensitivity. Linaclotide, a peripherally restricted 14 aa peptide approved for the treatment of IBS with constipation, relieves constipation and reduces IBS-associated pain in these patients presumably by activation of guanylate cyclase-C (GC-C), which stimulates production and release of cyclic guanosine monophosphate (cGMP) from intestinal epithelial cells. We investigated whether activation of GC-C by the endogenous agonist uroguanylin or the primary downstream effector of that activation, cGMP, directly modulates responses and sensitization of mechanosensitive colorectal primary afferents.
View Article and Find Full Text PDFThe Fischer 344 (F344) rat strain differs from the Lewis strain in the response to neuropathic pain. Recently, we found that F344 rats totally recover from mechanical allodynia induced by chronic constriction injury (CCI) of the sciatic nerve 28 days after surgery whereas Lewis rats are initiating their recovery at this time point. Thus, the use of this neuropathic pain model in these different rat strains constitutes a good strategy to identify possible target genes involved in the development of neuropathic pain.
View Article and Find Full Text PDFPleiotrophin (PTN) and midkine (MK) are two growth factors highly redundant in function that exhibit neurotrophic actions and are upregulated at sites of nerve injury, both properties being compatible with a potential involvement in the pathophysiological events that follow nerve damage (i.e. neuropathic pain).
View Article and Find Full Text PDFCurr Opin Investig Drugs
January 2008
Neuropathic pain, a persistent chronic pain resulting from damage to the central or peripheral nervous system, is a condition that severely affects the quality-of-life of millions of individuals worldwide. The treatment of neuropathic pain is still an unmet medical need; however, recent advances in our understanding of mechanisms underlying the perception and transmission of painful stimuli offer significant potential for improvement of therapies directed to neuropathic pain. Ectopic activity in damaged and dysfunctional sensory afferents is believed to have a role in the generation and maintenance of neuropathic pain.
View Article and Find Full Text PDFThe Fischer 344 (F344) rat inbred strain differs from the inbred Lewis and the outbred Sprague-Dawley (SD) in the response to different pain stimuli, which has been partially attributed to differences in the endogenous opioid and noradrenergic systems. Since brain-derived neutrophic factor (BDNF) modulates both the endogenous opioid and noradrenergic systems, we have now studied specific changes in BDNF gene expression related to the maintenance of neuropathic pain in the three rat strains. F344 rats were found to be the only strain that completely recovered from neuropathic pain (mechanical allodynia) 28 days after chronic constriction injury (CCI) of the sciatic nerve.
View Article and Find Full Text PDFTo discover regulatory pathways dependent on midkine (Mk the gene, MK the protein) signaling, we compared the transcriptional profiles of aortae obtained from Mk -/- and wild type (WT, +/+) mice; the comparison demonstrated an extraordinary high level expression of tyrosine hydroxylase (12-fold), the rate-limiting enzyme in catecholamine biosynthesis, DOPA decarboxylase (73-fold), and dopamine beta-hydroxylase (75-fold) in aortae of Mk -/- mice compared with aortae of WT (+/+) mice. Phenylethanolamine-N-methyltransferase, the enzyme catalyzing the conversion of norepinephrine into epinephrine, was not detected in either Mk -/- and WT (+/+) mouse aorta. The protein levels of tyrosine hydroxylase, DOPA decarboxylase and dopamine beta-hydroxylase confirmed the analysis of the transcriptional profiles.
View Article and Find Full Text PDFLewis and Fischer 344 (F344) rats differ in their pharmacological responses to a variety of drugs such as opioids, which has been partially attributed to differences in the endogenous opioid tone. Since opioid and alpha2-adrenergic mechanisms closely interact in nociception and substance abuse, a comparative study of the endogenous alpha2-adrenergic system in both inbred strains is of interest. Alpha-2 adrenoceptor subtypes and tyrosine hydroxylase, the rate-limiting enzyme of the catecholamine biosynthesis, were studied by Taqman RT-PCR analysis of gene expression in four brain areas of F344 and Lewis rats: hypothalamus, hippocampus, striatum and cortex.
View Article and Find Full Text PDFMidkine (MK) and the highly related cytokine pleiotrophin (PTN) constitute the PTN/MK developmental gene family. The Mk and Ptn genes are essential for normal development of the catecholamine and renin-angiotensin pathways and the synthesis of different collagens. It is not known whether the Ptn and Mk genes regulate each other or whether PTN and MK are functionally redundant in development.
View Article and Find Full Text PDFWe previously demonstrated that pleiotrophin (PTN the protein, Ptn the gene) highly regulates the levels of expression of the genes encoding the proteins of the renin-angiotensin pathway in mouse aorta. We now demonstrate that the levels of expression of these same genes are significantly regulated in mouse aorta by the PTN family member midkine (MK the protein, Mk the gene); a 3-fold increase in expression of renin, an 82-fold increase in angiotensinogen, a 6-fold decrease in the angiotensin converting enzyme, and a 6.5-fold increase in the angiotensin II type 1 and a 9-fold increase in the angiotensin II type 2 receptor mRNAs were found in Mk-/- mouse aorta in comparison with the wild type (WT, +/+).
View Article and Find Full Text PDFGlial cell line-derived neurotrophic factor (GDNF) exerts a notable protective effect on dopaminergic neurons in rodent and primate models of Parkinson's disease (PD). The clinical applicability of this therapy is, however, hampered by the need of a durable and stable GDNF source allowing the safe and continuous delivery of the trophic factor into the brain parenchyma. Intrastriatal carotid body (CB) autografting is a neuroprotective therapy potentially useful in PD.
View Article and Find Full Text PDFCell size of primary sensory neurons and distribution patterns of neurons that are immunopositive (ip) for VRL-1, a newly cloned capsaicin-receptor homologue, were examined in trigeminal ganglia (TGs) of knockout mice for trkA, trkB or trkC to determine the developmental dependency of myelinated nociceptors on expression of the genes. The number of TG neurons was strongly decreased in the knockout mice as compared to wildtype and heterozygous mice (82%, 39%, and 48% reduction for trkA, trkB and trkC, respectively). The absence of trkA and trkC reduced the number of TG neurons in all cell-size ranges.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2004
To better understand the phenotype of pleiotrophin (PTN the protein, Ptn the gene) genetically deficient mice (Ptn -/-), we compared the transcriptional profiles of aortae obtained from Ptn -/- and wild type (WT, Ptn +/+) mice using a 14,400 gene microarray chip (Affymetrix) and confirmed the analysis of relevant genes by real time RT-PCR. We found striking alterations in expression levels of different genes of the renin-angiotensin system of Ptn -/- mice relative to WT (Ptn +/+) mice. The mRNA levels of the angiotensin converting enzyme (ACE) were significantly decreased in Ptn -/- mice whereas the mRNA levels of the angiotensin II type 1 (AT1) and angiotensin II type 2 (AT2) receptors were significantly increased in Ptn -/- mice when they were compared with mRNA levels in WT (Ptn +/+) mice aortae.
View Article and Find Full Text PDFTo better understand the phenotype of pleiotrophin (PTN the protein, Ptn the gene) genetically deficient mice (Ptn -/-), we compared the transcriptional profiles of aortae obtained from Ptn -/- and wild type (WT, Ptn +/+) mice using a 14,400 gene microarray chip (Affymetrix) and confirmed the analysis of relevant genes by real time RT-PCR. We identified a dramatic upregulation of expression of tyrosine hydroxylase (TH), DOPA decarboxylase, and dopamine beta-hydroxylase in aortae of Ptn -/- mice in comparison with WT (Ptn +/+) mice. In contrast, transcripts of phenylethanolamine-N-methyltransferase, the enzyme catalyzing the conversion of norepinephrine into epinephrine, were not detected in aortae in either mouse strain.
View Article and Find Full Text PDFThe TrkB-expressing sensory neurons seem to be involved in touch and other discriminative sensibilities. Thus, several slowly and rapidly adapting cutaneous mechanoreceptors, as well as muscle spindles, are reduced or absent in the territory of the trigeminal nerve in functionally TrkB-deficient mice. Whether this also occurs in the cutaneous or muscular territories of dorsal root ganglia has not been analyzed.
View Article and Find Full Text PDFThe principal alpha subunit of voltage-gated sodium channels is associated with auxiliary beta subunits that modify channel function and mediate protein-protein interactions. We have identified a new beta subunit termed beta4. Like the beta1-beta3 subunits, beta4 contains a cleaved signal sequence, an extracellular Ig-like fold, a transmembrane segment, and a short intracellular C-terminal tail.
View Article and Find Full Text PDFThe role of glial cell-line derived neurotrophic factor (GDNF) and neurotrophins in the development of locus coeruleus noradrenergic neurons was evaluated. We found that two neurotrophic factors previously reported to prevent the degeneration of lesioned adult central noradrenergic neurons, GDNF and neurotrophin 3 (NT3), do not play significant roles in the prenatal development of locus coeruleus noradrenergic neurons, as demonstrated by: (1) the lack of alterations in double Gdnf/Nt3 null mutant mice; and (2) the lack of survival-promoting effects of GDNF and/or NT3 in rat E13.5 primary cultures.
View Article and Find Full Text PDF