The objective of this work is to develop a nanoplatform that can potentiate the oral administration of Δ9-tetrahidrocannabinol, a highly lipophilic active agent with very promising antiproliferative and antiemetic activities. To that aim, colloidal carriers based on the biodegradable and biocompatible poly(D,L-lactide-co-glycolide) were investigated. Such delivery systems were prepared by nanoprecipitation, and nanoparticle engineering further involved surface modification with a poly(ethylene glycol), chitosan, or poly(ethylene glycol)-chitosan shells to assure the greatest uptake by intestinal cells and to minimize protein adsorption.
View Article and Find Full Text PDFThis article aimed to produce, characterize and evaluate different surface-modified naphthalen-1-yl-(4-pentyloxynaphthalen-1-yl)methanone (CB13) loaded poly(lactic-co-glycolic acid) nanoparticles in order to improve their oral absorption and in vivo biodistribution. Plain and surface-modified PLGA nanoparticles were successfully prepared using a nanoprecipitation method. Chitosan, Eudragit RS, lecithin and vitamin E were used as surface modifying agents.
View Article and Find Full Text PDF