Herein, we report the synthesis of novel dimeric urea-bridged BODIPY-carbohydrate conjugates, which display circularly polarized luminescence (CPL). The dimers are composed of diastereomerically pure, axially chiral (P or M) BODIPY monomers containing a pendant glucose (d- or l-) unit. The latter was intended to add chirality, biocompatibility, and enhanced water solubility and facilitate the chromatographic resolution of the intermediate atropisomers.
View Article and Find Full Text PDFThe potential of using image-guided photodynamic therapy (ig-PDT) for cancer, especially with highly biocompatible fluorescent agents free of heavy atoms, is well recognized. This is due to key advantages related to minimizing adverse side effects associated with standard cancer chemotherapy. However, this theragnostic approach is strongly limited by the lack of synthetically-accessible and easily-modulable chemical scaffolds, enabling the rapid design and construction of advanced agents for clinical ig-PDT.
View Article and Find Full Text PDFRecent years have witnessed an increasing interest in the synthesis and study of BODIPY-glycoconjugates. Most of the described synthetic methods toward these derivatives involve postfunctional modifications of the BODIPY core followed by the covalent attachment of the fluorophore and the carbohydrate through a "connector". Conversely, few synthetic approaches to linker-free carbohydrate-BODIPY hybrids have been described.
View Article and Find Full Text PDFThe presence of F or CN substituents at boron in BODIPYs causes a dramatic effect on their reactivity, which allows their chemoselective postfunctionalization. Thus, whereas 1,3,5,7-tetramethyl B(CN)-BODIPYs displayed enhanced reactivity in Knoevenagel condensations with aldehydes, the corresponding BF-BODIPYs can experience selective aromatic electrophilic substitution (SAr) reactions in the presence of the former. These (selective) reactions have been employed in the preparation of BODIPY dimers and tetramers, with balanced fluorescence and singlet oxygen formation, and all-BODIPY trimers and heptamers, with potential application as light-harvesting systems.
View Article and Find Full Text PDFA very simple, small and symmetric, but highly bright, photostable and functionalizable molecular probe for plasma membrane (PM) has been developed from an accessible, lipophilic and clickable organic dye based on BODIPY. To this aim, two lateral polar ammoniostyryl groups were easily linked to increase the amphiphilicity of the probe and thus its lipid membrane partitioning. Compared to the BODIPY precursor, the transversal diffusion across lipid bilayers of the ammoniostyryled BODIPY probe was highly reduced, as evidenced by fluorescence confocal microscopy on model membranes built up as giant unilamellar vesicles (GUVs).
View Article and Find Full Text PDFWe envisioned a new approach for achieving triplet-triplet annihilation-assisted photon upconversion based on the rational design of a heavy-atom-free, all-organic and photoactivatable triplet-triplet synergistic multichromophoric molecular assembly. This single molecular architecture is easily built by covalently anchoring triplet-annihilator units (pyrenes) to a triplet-photosensitizer moiety (BODIPY), to improve the effectiveness and probability of the required triplet-triplet energy transfer and the ulterior triplet-triplet annihilation. This unprecedented design takes advantage of the high synthetic accessibility and chemical versatility of the -BODIPY scaffold.
View Article and Find Full Text PDFWe performed a time-gated laser-spectroscopy study in a set of heavy-atom free single BODIPY fluorophores, supported by accurate, excited-state computational simulations of the key low-lying excited states in these chromophores. Despite the strong fluorescence of these emitters, we observed a significant fraction of time-delayed (microseconds scale) emission associated with processes that involved passage through the triplet manifold. The accuracy of the predictions of the energy arrangement and electronic nature of the low-lying singlet and triplet excited states meant that an unambiguous assignment of the main deactivation pathways, including thermally activated delayed fluorescence and/or room temperature phosphorescence, was possible.
View Article and Find Full Text PDFWe have established an easy synthetic protocol for selectively developing all-orthogonal BODIPY trimers with unprecedented geometries on the basis of selecting methyl oxidation versus electrophilic formylation of key dimeric precursors. Photophysical characterization together with biological assays unraveled the most suitable BODIPY-BODIPY geometrical arrangements within the trimer, forcing them to serve as molecular platforms for the development of new, advanced heavy-atom-free photosensitizers for photodynamic therapy and phototheragnosis.
View Article and Find Full Text PDFBINOL moieties of different electronic demand are useful blocks for enabling the photo-production and modulation of triplet excited states in readily-accesible BINOL-based -BODIPY dyes from standard -BODIPY precursors. The rapid and rational development of smarter triplet-enabling BODIPY dyes on the basis of this strategy (, TADF biomarker 4a or room temperature phosphor 4g) paves the way for advancing photonic applications based on organic triplet photosensitizers.
View Article and Find Full Text PDFGeneration of triplet states in assemblies of organic chromophores is extremely appealing for their potential use in optoelectronic applications. In this work, we investigate the intricacies of triplet state generation in an orthogonal BODIPY dimer by combining delayed photoemission techniques with electronic structure calculations. Our analysis provides a deep understanding of the electronic states involved, and describes different competing deactivation channels beyond prompt radiative decay.
View Article and Find Full Text PDFPhasing agents enabling protein structure determination at 1 Å, the wavelength corresponding to the maximum intensity of the synchrotron facilities applied in biomacromolecular crystallography, have been long sought-after. The first phasing agent designed for solving native protein structures at 0.97934 Å is described herein.
View Article and Find Full Text PDFHitherto unreported 2,6-dipropargyl-1,3,5,7-tetramethyl BODIPYs can be efficiently prepared by a Nicholas reaction/decomplexation protocol from 1,3,5,7-tetramethyl BODIPYs. The title compounds, which improve the BODIPY photostability by retaining their inherent photophysical and photochemical properties, can be engaged in efficient copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) "click-type" reactions with azido derivatives to provide all-BODIPY-triads or conjugated BODIPYs.
View Article and Find Full Text PDFNovel, linker-free, BODIPY-carbohydrate derivatives containing sugar residues at positions C2 and C6 are efficiently obtained by, hitherto unreported, Ferrier-type -glycosylation of 8-aryl-1,3,5,7-tetramethyl BODIPYs with commercially available tri--acetyl-d-glucal followed by saponification. This transformation, which involves the electrophilic aromatic substitution (SAr) of the dipyrrin framework with an allylic oxocarbenium ion, provides easy access to BODIPY-carbohydrate hybrids with excellent photophysical properties and a weaker tendency to aggregate in concentrated water solutions.
View Article and Find Full Text PDFA convergent synthetic route to a tetrasaccharide related to PI-88, which allows the incorporation of a fluorescent BODIPY-label at the reducing-end, has been developed. The strategy, which features the use of 1,2-methyl orthoesters (MeOEs) as glycosyl donors, illustrates the usefulness of suitably-designed BODIPY dyes as glycosyl labels in synthetic strategies towards fluorescently-tagged oligosaccharides.
View Article and Find Full Text PDFHerein we detail a protocol to design dyads and triads based solely on BODIPY dyes as halogen-free singlet oxygen photosensitizers or energy transfer molecular cassettes. The conducted photonic characterization reveals the key role of the BODIPY-BODIPY linkage to finely modulate the balance between the triplet state population and fluorescence decay.
View Article and Find Full Text PDFWe report the design of a new model based on a small neutral 8-aryl-3-formylBODIPY and its suitability to develop privileged highly bright and photostable fluorescent probes for selective and, more importantly, covalent staining of mitochondria.
View Article and Find Full Text PDFCOO-BODIPYs are highlighted as cutting edge scaffolds for easy access to a new generation of multichromophoric architectures with enhanced (photo)chemical stability, showing either boosted capability for excitation energy transfer, glow fluorescence and laser emission, or photoinduced electron transfer. The new finding paves the way for the rapid development of smarter organic dyes for advancing photonics and optoelectronics.
View Article and Find Full Text PDFThe search for long-lived red and NIR fluorescent dyes is challenging and hitherto scarcely reported. Herein, the viability of aza-BODIPY skeleton as a promising system for achieving thermal activated delayed fluorescent (TADF) probes emitting in this target region is demonstrated for the first time. The synthetic versatility of this scaffold allows the design of energy and charge transfer cassettes modulating the stereoelectronic properties of the energy donors, the spacer moieties and the linkage positions.
View Article and Find Full Text PDFA general and straightforward method for the synthesis of COO-BODIPYs from F-BODIPYs and carboxylic acids is established. The method is based on the use of boron trichloride to activate the involved substitution of fluorine, which leads to high yields through rapid reactions under soft conditions. This mild method opens the way to unprecedented laser dyes with outstanding efficiencies and photostabilities, which are difficult to obtain by the current methods.
View Article and Find Full Text PDFA series of fluorescent boron-dipyrromethene (BODIPY, 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) dyes have been designed to participate, as aglycons, in synthetic oligosaccharide protocols. As such, they served a dual purpose: first, by being incorporated at the beginning of the process (at the reducing-end of the growing saccharide moiety), they can function as fluorescent glycosyl tags, facilitating the detection and purification of the desired glycosidic intermediates, and secondly, the presence of these chromophores on the ensuing compounds grants access to fluorescently labeled saccharides. In this context, a sought-after feature of the fluorescent dyes has been their chemical robustness.
View Article and Find Full Text PDFEndowing BODIPY PDT agents with the ability to probe lipid droplets is demonstrated to boost their phototoxicity, allowing the efficient use of highly fluorescent dyes (poor ROS sensitizers) as phototoxic agents. Conversely, this fact opens the way to the development of highly bright ROS photosensitizers for performing photodynamic theragnosis (fluorescence bioimaging and photodynamic therapy) from a single simple agent. On the other hand, the noticeable capability of some of the reported dyes to probe lipid droplets in different cell lines under different conditions reveals their use as privileged probes for advancing the study of interesting lipid droplets by fluorescence microscopy.
View Article and Find Full Text PDFHerein we describe the synthesis, computationally assisted spectroscopy, and lasing properties of a new library of symmetric bridged bis-BODIPYs that differ in the nature of the spacer. Access to a series of BODIPY dimers is straightforward through synthetic modifications of the pending -hydroxymethyl group of readily available C-8 () -hydroxymethyl phenyl BODIPYs. In this way, we have carried out the first systematic study of the photonic behavior of symmetric bridged bis-BODIPYs, which is effectively modulated by the length and/or stereoelectronic properties of the spacer unit.
View Article and Find Full Text PDFThe first fluorescent probes that are actively channeled into the mitochondrial matrix by a specific mitochondrial membrane transporter in living cells have been developed. The new functional probes () have a minimalist structural design based on the highly efficient and photostable BODIPY chromophore and carnitine as a biotargeting element. Both units are orthogonally bonded through the common boron atom, thus avoiding the use of complex polyatomic connectors.
View Article and Find Full Text PDFThe development of efficient and stable red and near-IR emitting materials under hard radiation doses and/or prolonged times is a sought-after task due to their widespread applications in optoelectronics and biophotonics. To this aim, novel symmetric all-BODIPY-triads, -pentads, and -hexads have been designed and synthesized as light-harvesting arrays. These photonic materials are spectrally active in the 655-730 nm region and display high molar absorption across UV-visible region.
View Article and Find Full Text PDFSupramolecular self-assembly of a highly flexible and achiral meso bis(boron dipyrromethene) [bis(BODIPY)] dye straightforwardly yields fluorescent microfibers, exhibiting an intriguing anisotropic photonic behavior. This performance includes the generation of chiroptical activity owing to spontaneous mirror symmetry breaking (SMSB). Repetition of several self-assembly experiments demonstrates that the involved SMSB is not stochastic but quasi deterministic in the direction of the induced chiral asymmetry.
View Article and Find Full Text PDF