Aquaporin-11 (AQP11) is expressed in human adipocytes, but its functional role remains unknown. Since AQP11 is an endoplasmic reticulum (ER)-resident protein that transports water, glycerol, and hydrogen peroxide (HO), we hypothesized that this superaquaporin is involved in ER stress induced by lipotoxicity and inflammation in human obesity. AQP11 expression was assessed in 67 paired visceral and subcutaneous adipose tissue samples obtained from patients with morbid obesity and normal-weight individuals.
View Article and Find Full Text PDFGlycerol is an important metabolite for the control of lipid accumulation in white adipose tissue (WAT) and liver. We aimed to investigate whether exogenous administration of leptin improves features of non-alcoholic fatty liver disease (NAFLD) in leptin-deficient ob/ob mice via the regulation of AQP3 and AQP7 (glycerol channels mediating glycerol efflux in adipocytes) and AQP9 (aquaglyceroporin facilitating glycerol influx in hepatocytes). Twelve-week-old male wild type and ob/ob mice were divided in three groups as follows: control, leptin-treated (1 mg/kg/d) and pair-fed.
View Article and Find Full Text PDFBackground: Glycerol constitutes an important metabolite for the control of lipid accumulation and glucose homeostasis. Our aim was to investigate the potential role of aquaglyceroporins, which are glycerol channels mediating glycerol efflux in adipocytes (AQP3 and AQP7) and glycerol influx (AQP9) in hepatocytes, in the improvement of adiposity and hepatic steatosis after sleeve gastrectomy in an experimental model of diet-induced obesity (DIO).
Methods: Male Wistar DIO rats (n = 161) were subjected to surgical (sham operation and sleeve gastrectomy) or dietary interventions [fed ad libitum a normal diet (ND) or a high-fat diet (HFD) or pair-fed to the amount of food eaten by sleeve-gastrectomized animals].
Mol Cell Endocrinol
November 2014
Aquaglyceroporins and caveolins are submicroscopic integral membrane proteins that are particularly abundant in many mammalian cells. Aquaglyceroporins (AQP3, AQP7, AQP9 and AQP10) encompass a subfamily of aquaporins that allow the movement of water, but also of small solutes, such as glycerol, across cell membranes. Glycerol constitutes an important metabolite as a substrate for de novo synthesis of triacylglycerols and glucose as well as an energy substrate to produce ATP via the mitochondrial oxidative phosphorylation.
View Article and Find Full Text PDF