Background: Head motion during brain positron emission tomography (PET)/computed tomography (CT) imaging degrades image quality, resulting in reduced reading accuracy. We evaluated the performance of a head motion correction algorithm using F-flutemetamol (FMM) brain PET/CT images.
Methods: FMM brain PET/CT images were retrospectively included, and PET images were reconstructed using a motion correction algorithm: (1) motion estimation through 3D time-domain signal analysis, signal smoothing, and calculation of motion-free intervals using a Merging Adjacent Clustering method; (2) estimation of 3D motion transformations using the Summing Tree Structural algorithm; and (3) calculation of the final motion-corrected images using the 3D motion transformations during the iterative reconstruction process.
Background: Cardiac and respiratory motions in clinical positron emission tomography (PET) are a major contributor to inaccurate PET quantification and lesion characterisation. In this study, an elastic motion-correction (eMOCO) technique based on mass preservation optical flow is adapted and investigated for positron emission tomography-magnetic resonance imaging (PET-MRI) applications.
Methods: The eMOCO technique was investigated in a motion management QA phantom and in twenty-four patients who underwent PET-MRI for dedicated liver imaging and nine patients for cardiac PET-MRI evaluation.
Compartmental modeling analysis of C-raclopride (RAC) PET data can be used to measure the dopaminergic response to intra-scan behavioral tasks. Bias in estimates of binding potential (BP) and its dynamic changes (ΔBP) can arise both when head motion is present and when the compartmental model used for parameter estimation deviates from the underlying biology. The purpose of this study was to characterize the effects of motion and model bias within the context of a behavioral task challenge, examining the impacts of different mitigation strategies.
View Article and Find Full Text PDFAgarose/succinoglycan hydrogels were prepared as pH-responsive drug delivery systems with significantly improved flexibility, thermostability, and porosity compared to agarose gels alone. Agarose/succinoglycan hydrogels were made using agarose and succinoglycan, a polysaccharide directly isolated from . Mechanical and physical properties of agarose/succinoglycan hydrogels were investigated using various instrumental methods such as rheological measurements, attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopic analysis, X-ray diffraction (XRD), and field-emission scanning electron microscopy (FE-SEM).
View Article and Find Full Text PDFThe impact of a method for MR-based respiratory motion correction of PET data on lesion visibility and quantification in patients with oncologic findings in the lung was evaluated. Twenty patients with one or more lesions in the lung were included. Hybrid imaging was performed on an integrated PET/MR system using 18F-FDG as radiotracer.
View Article and Find Full Text PDFBackground: Respiratory motion in PET/CT leads to well-known image degrading effects commonly compensated using elastic motion correction approaches. Gate-to-gate motion correction techniques are promising tools for improving clinical PET data but suffer from relatively long reconstruction times. In this study, the performance of a fast elastic motion compensation approach based on motion deblurring (DEB-MC) was evaluated on patient and phantom data and compared to an EM-based fully 3D gate-to-gate motion correction method (G2G-MC) which was considered the gold standard.
View Article and Find Full Text PDFIntroduction: 18F-Sodium Fluoride Positron Emission Tomography (18F-NaF PET) is a novel molecular imaging modality with promise for use as a risk stratification tool in cardiovascular disease. There are limitations in the analysis of small and rapidly moving coronary arteries using traditional PET technology. We aimed to validate the use of a motion correction algorithm (eMoco) on coronary 18F-NaF PET outcome parameters.
View Article and Find Full Text PDFObjective: Aortic occlusion with an endoballoon is a well-established technique to facilitate robotic and minimally invasive mitral valve surgery. Use of the endoballoon has several relative contraindications including ascending aortic dilatation greater than 38 mm in size. We sought to review our experience using the endoballoon in cases of totally endoscopic mitral valve surgery with aortic diameters greater than 38 mm.
View Article and Find Full Text PDFUnlabelled: Integrated whole-body PET/MR facilitates the implementation of a broad variety of respiratory motion correction strategies, taking advantage of the strengths of both modalities. The goal of this study was the quantitative evaluation with clinical data of different MR- and PET-data-based motion correction strategies for integrated PET/MR.
Methods: The PET and MR data of 20 patients were simultaneously acquired for 10 min on an integrated PET/MR system after administration of (18)F-FDG or (68)Ga-DOTANOC.
A new data handling method is presented for improving the image noise distribution and reducing bias when reconstructing very short frames from low count dynamic PET acquisition. The new method termed 'Complementary Frame Reconstruction' (CFR) involves the indirect formation of a count-limited emission image in a short frame through subtraction of two frames with longer acquisition time, where the short time frame data is excluded from the second long frame data before the reconstruction. This approach can be regarded as an alternative to the AML algorithm recently proposed by Nuyts et al, as a method to reduce the bias for the maximum likelihood expectation maximization (MLEM) reconstruction of count limited data.
View Article and Find Full Text PDFPhys Med Biol
September 2014
LSO scintillators (Lu2Sio5:Ce) have a background radiation which originates from the isotope Lu-176 that is present in natural occurring lutetium. The decay that occurs in this isotope is a beta decay that is in coincidence with cascade gamma emissions with energies of 307,202 and 88 keV. The coincidental nature of the beta decay with the gamma emissions allow for separation of emission data originating from a positron annihilation event from transmission type data from the Lu-176 beta decay.
View Article and Find Full Text PDFJ Phys Condens Matter
September 2012
The effect of LaFeO(3) addition to Bi(1/2)(Na(0.78)K(0.22))(1/2)TiO(3) ceramics on the phase stability and macroscopic functional properties was investigated.
View Article and Find Full Text PDFIn positron emission tomography (PET), a typical reconstruction algorithm relies on a method to estimate and subtract the scatter from the net trues coincidences. The remaining unscattered coincidences are then used to reconstruct an image of the original activity distribution. The introduction of time-of-flight (TOF) PET opens the possibility to change this scheme, and use the spatial information carried by the scattered events for the reconstruction.
View Article and Find Full Text PDFWe have developed a positron emission tomography (PET) and magnetic resonance imaging (MRI) fusion system for the molecular-genetic imaging (MGI) of the in vivo human brain using two high-end imaging devices: the HRRT-PET, a high-resolution research tomograph dedicated to brain imaging on the molecular level, and the 7.0 T-MRI, an ultra-high field version used for morphological imaging. HRRT-PET delivers high-resolution molecular imaging with a resolution down to 2.
View Article and Find Full Text PDF