Publications by authors named "Inka Pawlitzky"

Introduction: The undiminished need for more effective cancer treatments stimulates the development of novel cancer immunotherapy candidates. The archetypical cancer immunotherapy would induce robust, targeted and long-lasting immune responses while simultaneously circumventing immunosuppression in the tumour microenvironment. For this purpose, we developed a novel immunomodulatory nanomedicine: PRECIOUS-01.

View Article and Find Full Text PDF

Since the discovery of induced pluripotent stem cells there has been intense interest in understanding the mechanisms that allow a somatic cell to be reprogrammed back to a pluripotent state. Several groups have studied the alterations in gene expression that occur as somatic cells modify their genome to that of an embryonic stem cell. Underpinning many of the gene expression changes are modifications to the epigenetic profile of the associated chromatin.

View Article and Find Full Text PDF

Specification of the cellular hierarchy in the mammary gland involves complex signaling that remains poorly defined. Polycomb group proteins are known to contribute to the maintenance of stem cell identity through epigenetic modifications, leading to stable alterations in gene expression. The polycomb protein family member EZH2 is known to be important for stem cell maintenance in multiple tissues, but its role in mammary gland development and differentiation remains unknown.

View Article and Find Full Text PDF

The 5' end of the IgH locus contains a cluster of DNaseI hypersensitive sites, one of which (HS1) was shown to be pro-B cell specific and to contain binding sites for the transcription factors PU.1, E2A, and Pax5. These data as well as the location of the hypersensitive sites at the 5' border of the IgH locus suggested a possible regulatory function for these elements with respect to the IgH locus.

View Article and Find Full Text PDF

The Igh locus is controlled by cis-acting elements, including Emu and the 3' IgH regulatory region which flank the C region genes within the well-studied 3' part of the locus. Although the presence of additional control elements has been postulated to regulate rearrangements of the VH gene array that extends to the 5' end of the locus, the 5' border of Igh and its flanking region have not been characterized. To facilitate the analysis of this unexplored region and to identify potential novel control elements, we physically mapped the most D-distal VH segments and scanned 46 kb of the immediate 5' flanking region for DNase I hypersensitive sites.

View Article and Find Full Text PDF