Bioengineering immune cells via gene therapy offers treatment opportunities for currently fatal viral infections. Also cell therapeutics offer most recently a breakthrough technology to combat cancer. These primary human cells, however, are sensitive to toxic influences, which make the utilization of optimized physical transfection techniques necessary.
View Article and Find Full Text PDFNanocarrier-based drug delivery is a promising therapeutic approach that offers unique possibilities for the treatment of various diseases. However, inside the blood stream, nanocarriers' properties may change significantly due to interactions with proteins, aggregation, decomposition or premature loss of cargo. Thus, a method for precise, in situ characterization of drug nanocarriers in blood is needed.
View Article and Find Full Text PDFThe skin represents a physical and chemical barrier against invading pathogens, which is additionally supported by restriction factors that provide intrinsic cellular immunity. These factors detect viruses to block their replication cycle. Here, we uncover the Myb-related transcription factor, partner of profilin (MYPOP) as a novel antiviral protein.
View Article and Find Full Text PDFTumors are characterized by leaky blood vessels, and by an abnormal and heterogeneous vascular network. These pathophysiological characteristics contribute to the enhanced permeability and retention (EPR) effect, which is one of the key rationales for developing tumor-targeted drug delivery systems. Vessel abnormality and heterogeneity, however, which typically result from excessive pro-angiogenic signaling, can also hinder efficient drug delivery to and into tumors.
View Article and Find Full Text PDFThe bottom-up approach in synthetic biology involves the engineering of synthetic cells by designing biological and chemical building blocks, which can be combined in order to mimic cellular functions. The first step for mimicking a living cell is the design of an appropriate compartment featuring a multifunctional membrane. This is of particular interest since it allows for the selective attachment of different groups or molecules to the membrane.
View Article and Find Full Text PDFCyanine (Cy) dyes show a general propensity to localize in polarized mitochondria. This mitochondriotropism was used to perform a copper-free click reaction in the mitochondria of living cells. The in organello reaction of dyes Cy3 and Cy5 led to a product that was easily traceable by Förster resonance energy transfer (FRET).
View Article and Find Full Text PDFUnlabelled: The human papillomavirus (HPV) capsid protein L2 is essential for viral entry. To gain a deeper understanding of the role of L2, we searched for novel cellular L2-interacting proteins. A yeast two-hybrid analysis uncovered the actin-depolymerizing factor gelsolin, the membrane glycoprotein dysadherin, the centrosomal protein 68 (Cep68), and the cytoskeletal adaptor protein obscurin-like 1 protein (OBSL1) as putative L2 binding molecules.
View Article and Find Full Text PDFSynthetic access to multiple surface decorations are a bottleneck in the development of liposomes for receptor mediated targeting. This opens a complex multiparameter space, exploration of which is severely limited in terms of sample numbers and turnaround times. Here, we unlock this technological barrier by a combination of a milligram-scale liposome formulation using dual centrifugation and orthogonal click chemistry on the liposomal surface.
View Article and Find Full Text PDF