Introduction: The role of miRNAs in regulating variable molecular functions has been sought by scientists for its promising utility in regulating the immune response and, hence, in treating various diseases. In hepatocellular carcinoma (HCC) specifically, a reduction in the number and efficiency of circulating and intrahepatic natural killer (NK) cells has been reported. Our project aims to investigate the role of in the regulation of NK cell cytotoxicity, especially since it plays a tumor suppressor role in the context of HCC.
View Article and Find Full Text PDFMeis1 is a transcription factor involved in numerous functions including development and proliferation and has been previously shown to harness cell cycle progression. In this study, we used in silico analysis to predict that miR-499-5p targets Meis1 and that Malat1 sponges miR-499-5p. For the first time, we demonstrated that the overexpression of miR-499-5p led to the downregulation of Meis1 mRNA and protein in C166 cells by directly binding to its 3'UTR.
View Article and Find Full Text PDFBackground: Proteoglycans are important tumor microenvironment extracellular matrix components. The regulation of key proteoglycans, such as decorin (DCN), by miRNAs has drawn attention since they have surfaced as novel therapeutic targets in cancer. Accordingly, this study aimed at identifying the impact of miR-181a in liver cancer and its regulatory role on the extracellular matrix proteoglycan, DCN, and hence on downstream oncogenes and tumor suppressor genes.
View Article and Find Full Text PDFAim: We have previously characterized oncogenic properties of IGF2BP1 in HCC, and its regulation by short noncoding RNAs (ncRNAs). Recent evidence suggests that IGF2BP1 itself may regulate long ncRNAs (lncRNAs). Therefore, this study aimed at exploring the interplay between IGF2BP1 and various upstream and downstream ncRNAs and its link to HCC pathogenesis.
View Article and Find Full Text PDFThe role of miR-34a in hepatocellular carcinoma (HCC) is controversial and several unresolved issues remain, including its expression pattern and relevance to tumor etiology, tumor stage and prognosis, and finally, its impact on apoptosis. miR-34a expression was assessed in hepatitis C virus (HCV)-induced non-metastatic HCC tissues by RT-Q-PCR. Huh-7 cells were transfected with miR-34a mimics and the impact of miR-34a was examined on 84 pro-apoptotic/anti-apoptotic genes using PCR array; its net effect was tested on cell viability via MTT assay.
View Article and Find Full Text PDFAim: To investigate the effect of microRNA on insulin-like growth factor binding protein-3 (IGFBP-3) and hence on insulin-like growth factor-II (IGF-II) bioavailability in hepatocellular carcinoma (HCC).
Methods: Bioinformatic analysis was performed using microrna.org, DIANA lab and Segal lab softwares.
IGF2BP 1, 2 and 3 control the fate of many transcripts. Immunoprecipitation studies demonstrated the IGF2BPs to bind to IGF1R mRNA, and our laboratory has recently shown them to post-transcriptionally regulate IGF1R. This study sought to identify a microRNA regulating the IGF2BPs and consequently IGF1R.
View Article and Find Full Text PDFDiscov Med
June 2015
Objectives: Elevated type I interferon (IFN) is believed to be one of the crucial factors involved in the pathogenesis of systemic lupus erythematosus (SLE). Its expression was recently found to be governed by the transcription factor E2F1 which is involved in an autoregulatory triad along with c-Myc and the microRNA polycistron miR-17-92. However, this intricate triad has seldom been investigated in SLE patients.
View Article and Find Full Text PDFThis study aimed to identify a single miRNA or miR (microRNA) which regulates the three insulin-like growth factor-2-mRNA-binding proteins (IGF2BP1, 2 and 3). Bioinformatics predicted miR-1275 to simultaneously target the three IGF2BPs, and screening revealed miR-1275 to be underexpressed in hepatocellular carcinoma (HCC) tissues. Transfection of HuH-7 cells with miR-1275 suppressed IGF2BPs expression and all three IGF2BPs were confirmed as targets of miR-1275.
View Article and Find Full Text PDF